博碩士論文 104226062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.238.248.103
姓名 黃凱麟(Kai-Lin Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氮化物表面電漿生醫感測之理論分析
(Theoretical Analyses on Nitride-based Surface Plasmon Resonance Biosensors)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 矽基板上的氮化鎵異質磊晶術★ 矽基板上的氮化物太陽能電池
★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層
★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝
★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體★ 強度敏感式影像橢圓儀及應用
★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井
★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響
★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討★ 以氮化物表面電漿結構研製的生醫感測微晶片
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 表面電漿共振是存在於金屬與介電物質介面處的表面電磁波,近年來表面電漿共振的特性,已被大幅應用在生醫檢測技術。表面電漿共振生醫感測是屬於光學式的量測方式,對金屬/介電質界面的折射率變化具備超高的敏感度,藉此我們可以判定表面待測物質的濃度變化。
本研究以氮化物為介電質,搭配銀薄膜以形成表面電漿結構,並利用理論分析的方式,探究氮化物表面電漿結構在生醫感測上的應用潛力。與傳統常用的稜鏡相較,氮化物(GaN或InGaN)具備更高的折射率、更高的化學穩定度。而氮化銦鎵(InGaN)量子井所產生的光子,非常適合當作表面電漿效應的增益介質(Gain Medium),可增加感測元件的靈敏度。此外,氮化物的磊晶方式,可輕易形成大面積分布的奈米結構,有助於產生單分子偵測所需的表面拉曼散射增強效應(surface enhanced Raman scattering, SERS)。我們利用模擬的方式,觀察其氮化物表面電漿的強度變化,並藉此說明氮化物表面電漿結構在生物檢測應用上的優勢。
摘要(英)
Surface plasmon resonance (SPR) is the collective electron oscillation at the interface of metal and dielectric material. The SPR effect is highly sensitive to the change of surface refractive index, and therefore can be used to detect biomolecular binding events between the antibody and the antigen.
In this research, we present theoretical analyses on the potential of nitride-based SPR structure in biosensing applications. The SPR effect is achieved with a GaN/InGaN/GaN quantum well and a thin Ag layer, and the change in surface refractive index is detected by the varied emission intensity from the quantum well. The nitride epilayers were grown with metal-organic chemical vapor deposition (MOCVD). The MOCVD technique can easily produce wafer-scale nanostructures that are suitable for single-molecule detection with the surface enhanced Raman scattering (SERS) effect. With the calculated dispersion curves and the penetration depths estimated by the finite-difference time-domain method, we demonstrate the advantages of this novel SPR biosensing structure, which are not attainable with the conventional Kretschmann configuration.
關鍵字(中) ★ 表面電漿
★ 氮化鎵
關鍵字(英) ★ Surface Plasmon
★ GaN
論文目次
中 文 摘 要 I

ABSTRACT II

誌謝 III

目錄 IV

圖目錄 VI

表目錄 IX

中英文名詞縮寫對照表 X

第一章、 緒論 1
1.1前言 1
1.2氮化物材料結構與特性 3
1.3表面電漿生醫感測元件的優勢與挑戰 5
1.4研究動機與章節架構 8
第二章、實驗原理、製程與儀器 9
2.1表面電漿原理 9
2.2表面電漿色散曲線 15
2.3表面電漿共振現象....... ...19
2.4金屬奈米粒子局域性表面電漿....... ...22
2.5增益介質....... ...24
2.6試片結構及元件製作流程....... ...25
2.7模擬軟體介紹....... ...27
第三章、分析與討論 28
3.1氮化鎵與銀介面色散曲線 28
3.2氮化鎵與銀介面能態密度 29
3.3表面電漿共振角度 31
3.4表面電漿模擬分析FDTD 36
3.5氮化鎵光致激發光譜(PL)量測分析 44
第四章、結論與未來發展 49
4.1結論 49
4.2未來發展 49
參考文獻 52
參考文獻
[1] H. Raether, et al. Surface Plasmons On Smooth And Rough Surfaces And On Gratings. (Springer Berlin Heidelberg, 1988).
[2] A. Zayats, et al. "Nano-optics of surface plasmon polaritons." Physics Reports 408, 131-314 (2005).
[3] C. Bohren, et al. Absorption And Scattering Of Light By Small Particles. (Wiley, New York [Etc.], 2013).
[4] J. Mock, et al. "Shape effects in plasmon resonance of individual colloidal silver nanoparticles." The Journal of Chemical Physics 116, 6755-6759 (2002).
[5] D. Schultz, et al. "Plasmon resonant particles for biological detection." Current Opinion in Biotechnology 14, 13-22 (2003).
[6] S. Sabban, et al. "Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity receptor FcɛRI." Veterinary Immunology and Immunopathology 153, 10-16 (2013).
[7] H. Otte, et al. "Crystallographic Formulae for Hexagonal Lattices." Physica Status Solidi (b) 9, 441-450 (1965).
[8] C. Palache, et al. Elements, Sulfides, Sulfosalts, Oxides. (Wiley & Sons, New York, 1944).
[9] S. Zhao, et al. "Mechanism of improving forward and reverse blocking voltages in AlGaN/GaN HEMTs by using Schottky drain." Chinese Physics B 23, 107303 (2014).
[10] R. Thapa, et al. "Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection." Applied Physics Letters 100, 232109 (2012).
[11] E. Hecht, Optics. (Addison-Wesley, San Francisco, 2002).
[12]吳民耀、劉威志,"表面電漿子理論與模擬",物理雙月刊,28,486 (2006).
[13]邱國斌、蔡定平,"金屬表面電漿簡介",物理雙月刊,28,472 (2006).


[14] A. Otto, et al. "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection." Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968).
[15] E. Kretschmann, et al. "Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächen plasma schwingungen." Zeitschrift für Physik A Hadrons and nuclei 241, 313-324 (1971).
[16] S. Zeng, et al. "A Review on Functionalized Gold Nanoparticles for Biosensing Applications." Plasmonics 6, 491-506 (2011).
[17] R. Oulton, et al. "Plasmon lasers at deep subwavelength scale." Nature 461, 629-632 (2009).
[18] R. Ma,, et al. "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection." Nature Materials 10, 110-113 (2010).
[19] C. Zhang, et al. "High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications." Advanced Materials 29, 1605177 (2017).
[20] K. McPeak, et al. "Plasmonic Films Can Easily Be Better: Rules and Recipes." ACS Photonics 2, 326-333 (2015).
[21] T. Kawashima, et al. "Optical properties of hexagonal GaN." Journal of Applied Physics 82, 3528-3535 (1997).
[22] SCHOTT optical glass data sheets (2015). (https://refractiveindex.info/download/data/2015/schott-optical-glass-collection-datasheets-july-2015-us.pdf)
[23] V. Komarala, et al. "Dependence of metal layer thickness and dielectric material." Journal of Applied Physics 107, 014309 (2010).
[24] C. Zhang, et al. "High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications." Advanced Materials 29, 1605177 (2017).

[25] A. Rakić, et al. "Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum." Applied Optics 34, 4755 (1995).
[26] P. Johnson, et al. "Optical Constants of the Noble Metals." Physical Review B 6, 4370-4379 (1972).
[27] I. Gontijo, et al. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons." Physical Review B 60, 11564-11567 (1999).
[28] S. Maegawa, et al. "In situ observation of adsorbed fatty acid films using surface plasmon resonance." Tribology International 97, 228-233 (2016).
[29] N. Chiu, et al. "Graphene Oxide Based Surface Plasmon Resonance Biosensors." Advances in Graphene Science (2013).
[30] P. Lorrain, F. Lorrain and D. Corson, Electromagnetic Fields And Waves. (Freeman, New York, N.Y., 1987).
[31] J. Reitz, et al. Foundations Of Electromagnetic Theory. (Pearson Education, Inc., Sin Lugar, 1993).
[32]H. Gwon, et al. "Spectral and Angular Responses of Surface Plasmon Resonance Based on the Kretschmann Prism Configuration." Materials Transactions 51, 1150-1155 (2010).
[33] A. Taflove, et al. Computational Electrodynamics. (Artech House, Boston, Mass. [U.A.], 2010).
[34] J. Kottmann, et al. "Plasmon resonant coupling in metallic nanowires." Optics Express 8, 655 (2001).
[35] J. Kottmann, et al. "Retardation-induced plasmon resonances in coupled nanoparticles." Optics Letters 26, 1096 (2001).
[36] E. Blackie, et al. "Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules." Journal of the American Chemical Society 131, 14466-14472 (2009).
[37] Jiang, et al. "Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals." The Journal of Physical Chemistry B 107, 9964-9972 (2003).
[38] J. Hus, et al. "Bottom-Up Nano-heteroepitaxy of Wafer-Scale Semipolar GaN on (001) Si." Advanced Materials 27, 4845-4850 (2015).
[39] R. Wangsness, Electromagnetic Fields. (Wiley, New York, 1986).
指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2017-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明