博碩士論文 104226602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.238.232.88
姓名 邑瑪儒(Enette Mae C. Revilla)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 單光子放射顯微系統之校正與螺旋重建
(System Calibration and Helical Reconstruction of Single Photon Emission Microscope)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-9-1以後開放)
摘要(中) 本論文以單光子放射顯微鏡(SPEM)作為影像擷取系統,進行此系
統的幾何校正方法及螺旋掃描重建演算法的開發。SPEM 為單光子放
射電腦斷層掃描儀(SPECT)的分支,其系統設計包含了七針孔準直儀、
碘化銫閃爍晶石、光影像縮倍管(DM tube)與電子增益電荷耦合元件
(EMCCD),目的在獲取高空間解析度之投影及斷層掃描重建影像。
在斷層掃描系統中,為了獲得好的重建影像,最重要的關鍵是建
立精確的影像系統矩陣,即 H 矩陣。我們利用系統的幾何校正與成
像模型來建立 H 矩陣。為了取得七針孔 SPEM 系統的幾何架構,我
們將 99mTc 注入三點射源假體作 64 個投影影像,用來估計系統的幾
何參數,包括針孔位置、旋轉軸(AOR)的參數、以及相機與位移平台
間的線性和旋轉位移。而格點掃描實驗用來將量測的點響應函數
(PRFs)轉成二維高斯參數,並利用 PRFs 建立成像模型,包含通量與
寬度模型。而藉由幾何參數與成像模型可以建立出完整的 H 矩陣。
另一方面,為了改善圓形軌跡重建時的軸向模糊,並增加取樣完
整性及解析度,實驗中以旋轉平台及線性位移平台同時動作來達成螺
旋掃描軌跡,並重新設計 H 矩陣的排列方式,搭配最大可能性之期
望值最大化演算法來進行影像重建。
摘要(英) The single photon emission microscope (SPEM) is an instrument
which is developed in order to acquire high spatial resolution single photon
emission computer tomography (SPECT) projection images which are
necessary for tomographic reconstruction. The SPEM system consists of a
thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a 7-pinhole
collimator, a demagnifying tube (DM Tube) and an electron-multiplying
charge-coupling device (EMCCD).
For any imaging system, it is crucial to have an accurate imaging
system matrix, called H matrix, in order to obtain high spatial resolution
image reconstructions. In order to generate the H matrix, geometric
calibration and the established imaging model are used. In order to get the
geometry of the 7-pinhole SPEM system, a three-point phantom filled with
99mTc pertechnetate liquid solution is rotated in order to acquire 64
projections. The geometry of the camera, including the pinhole positions,
the parameters of the axis of rotation and the linear and rotary shifts are
estimated by getting the centroids of the projections. The grid-scan
experiment is used to parameterize the measured point response functions
(PRFs) into 2D Gaussians. These PRFs is used to create the imaging model
which consists of flux and width models. By having the geometric
parameters and the established imaging model, the complete H matrix can
be built.
In this paper, a helical reconstruction algorithm is developed in order
to lessen axial blurring brought by circular-orbit reconstructions and thus,
improve sampling and increase resolution. The helical orbit is
vii
accomplished through the combination of circular motion and linear
motion of the imaged object along the axis of rotation (AOR). The
projection images of the three-point phantom and resolution phantom are
reconstructed with the H matrix of the designed system. The image
reconstruction software tool is based on the maximum likelihood algorithm
and its ordered-subset version. Correction of the designed H matrix is
being explored in order to produce better reconstruction images.
關鍵字(中) ★ 單光子放射顯微鏡(SPEM)
★ 幾何校正
★ 成像模型
★ 螺旋
關鍵字(英) ★ Single photon emission microscope (SPEM)
★ Geometric calibration
★ Imaging model
★ Helical
論文目次 Table of Contents
Chinese Abstract v
Abstract vii
Acknowledgement ix
List of Figures... xx
List of Tables… xxv
Chapter 1 – Introduction 1
1.1 Motivation and Background 1
1.2 Research Objective 2
1.3 Scope of the Thesis 3
Chapter 2 – Research Background 5
2.1 Nuclear Medicine Imaging 5
2.1.1 Positron Emission Tomography 6
2.1.2 Single Photon Emission Computed Tomography 8
2.1.2.1 Helical SPECT 10
2.1.3. Single Photon Emission Microscope (SPEM) 11
2.2 Collimator… 13
2.3 Gamma Detector 15
2.3.1 Semiconductor Detector 15
2.3.2 Scintillation Detector 17
Chapter 3 – System Calibration Methods for the SPEM System 21
3.1 System Matrix of a Linear Digital-Imaging System 21
3.2 System Calibrations 24
3.2.1 Geometric Collinear Projection Model 24
3.2.2 Preliminary Calibration by Geometrical Optics 25
3.2.3 Geometric Calibration 28
3.2.4 Grid-Scan Experiment 31
3.2.5 Pinhole Axis Estimation 32
3.2.6 Imaging Model 34
3.3 Maximum-Likelihood Reconstructions 36
3.3.1 Maximum-Likelihood Expectation Maximization (ML-EM) 37
3.3.2 Ordered-Subsets Expectation Maximization (OS-EM) 39
3.3.3 Helical Reconstruction Algorithm 40
3.4 Instrument Control Kernel 44
Chapter 4 – Experiments and Results 51
4.1 System Components 51
4.2 Geometric Calibration Experiment 53
4.3 Grid-Scan Experiment 60
4.4 Imaging Model 74
4.4.1 Flux Model 74
4.4.2 Width Model 78
4.4.3 Generation of H Matrix 82
4.5 Image Reconstruction Results 84
4.5.1 Three-point Source Reconstruction 84
4.5.2 Point-Rods Reconstruction 90
4.5.3 Resolution Phantom Reconstruction 93
4.6 Discussion 96
Chapter 5 – Conclusion and Research Prospect 104
5.1 Conclusion 104
5.2 Future Work 106
References… 108
參考文獻 [1] M. V. Green, J. Seidel, J. J. Vaquero, E. Jagoda, I. Lee and W.C. Eckelman, "High resolution PET, SPECT and projection imaging in small animals," Computerized Medical Imaging and Graphics, vol. 25, no. 2, pp. 79-86, 2001.
[2] M. N. Wernick and J. N. Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT, Elsevier Academic Press, London, 2004.
[3] G. L. Zeng, J. R. Galt, “Analytic image reconstruction methods,” in Emission Tomography: The Fundamentals of PET and SPECT, M. N. Wernick and J. N. Aarsvold eds., pp. 127-152, Elsevier Academic Press, San Diego, CA, 2004.
[4] S. R. Cherry and S. S. Gambhir, “Use of positron emission tomography in animal research,” ILAR Journal, vol. 42, no. 3, pp. 219-232, 2001.
[5] M. N. Wernick and J. N. Aarsvold, “Introduction to Emission Tomography,” in Emission Tomography: The Fundamentals of PET and SPECT, pp 11-23, Elsevier Academic Press, San Diego, CA, 2004.
[6] R. Golestani, C. Wu, R. A. Tio, C. J. Zeebregts, A. D. Petrov, F. J. Beekman, et al., “Small-animal SPECT and SPECT/CT: application in cardiovascular research,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, pp. 1766-1777, 2010.
[7] J. Mejia, O. Y. Galvis-Alonso, A. A. Castro, J. Braga, J. P. Leite, M. V. Simoes, “A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging,” Brazilian Journal of Medical and Biological Research, vol. 43, pp. 1160-1166, 2010.
[8] J. Qian, E. L. Bradley, S. Majewski. V. Popov, et al., "A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 594, no. 1, pp. 102–110, August 21, 2008.
[9] P. C. Huang and C. H. Hsu, "Fast iterative reconstruction for helical pinhole SPECT imaging," Bio-Medical Materials and Engineering, vol. 26, pp.1371-1380, 2015.
[10] Y. Weng, G. L. Zeng, G. T. Gullberg, "A reconstruction algorithm for helical cone-beam SPECT," IEEE Transactions on Nuclear Science, vol. 40, no. 4, pp. 1092-1101, August 4, 2003.
[11] H. K. Tuy, "An inversion formula for cone-beam reconstruction," SIAM Journal on Applied Mathematics, vol. 43, no. 3, pp. 546–552, 1983.
[12] J. Mejia, M.A. Reis, A.C.C. Miranda, I.R. Batista, and M.R.F. Barboza, et al., “Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs,” Brazilian Journal of Medical and Biological Research, vol. 46, no. 11, pp. 936-942, 2013.
[13] L. J. Meng, N. H. Clinthorne, S. Skinner, R. V. Hay, and M. Gross, “Design and feasibility study of a single photon emission microscope system for small animal I-125 imaging,” IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 1168-1178, 2006.
[14] K. V. Audenhaege, R. van Holen, S. Vandenberghe, C. Vanhove, S. D. Metzler and S. C. Moore, “Review of SPECT collimator selection, optimization and fabrication for clinical and preclinical imaging,” Medical Physics, vol. 42, no. 8, pp. 4796-813, 2015.
[15] M. C. M. Rentmeester, F. van der Have and F. J. Beekman, “Optimizing multi-pinhole SPECT geometries using an analytical model,” Physics in Medicine and Biology, vol. 52, no. 9, pp. 2567-81, 2007.
[16] G. S. P. Mok, Y. Wang and B. M. W. Tsui, “Quantification of the multiplexing effects in multi-pinhole small animal SPECT: a simulation study,” IEEE Transactions on Nuclear Science, vol. 56, no. 5, pp. 2636-43, 2009.
[17] P. Nillius and M. Danielsson, “Theoretical bounds and system design for multipinhole SPECT”, IEEE Transactions on Nuclear Science, vol. 29, no. 7, pp. 1390-1340, 2010.
[18] T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, and B. A. Brunett, et al., “Cadmium zinc telluride and its use as a nuclear radiation detector material,” Elsevier Materials Science and Engineering: R: Reports, vol. 32, no. 4-5, pp. 103-189, 2001.
[19] Y. J. Wang, B. E. Patt, J. S. Iwanczyk, "High efficiency CsI(TI)/HgI2 gamma ray spectrometers," IEEE Transactions on Nuclear Science, vol. 42, no. 4, pp. 601-605, August 1995.
[20] J. Valentine, D. Wehe, G. Knoll, C. Moss, "Temperature dependence of absolute CsI(Tl) scintillation yield," IEEE Transactions on Nuclear Science, vol. 1, pp. 176-182, December 1991.
[21] C. Fiorini, A. Longoni, F. Perotti, C. Labanti, et al., "Gamma ray spectroscopy with CsI(Tl) scintillator coupled to silicon drift chamber," IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp. 2553-2560, December 1997.
[22] S.D. Metzler, R. J. Jaszczak, K. L. Greer, J. E. Bowsher. IEEE Transactions on Nuclear Science, vol. 54, no. 1, pp. 124-129, 2007.
[23] S.D. Metzler, R. J. Jaszczak, N. H. Patil, S. Vemulapalli, G. Akabani, B. B. Chin. IEEE Transactions on Medical Imaging, vol. 24, no. 7, pp. 853-862, 2005.
[24] S.D. Metzler, K. L. Greer, R. J. Jaszczak. IEEE Transactions on Medical Imaging, vol. 24, no. 3, pp. 361-370, 2005.
[25] S.D. Metzler, K. L. Greer, K. Bobkov, R. J. Jaszczak. IEEE Transactions on Nuclear Science, vol. 51, no. 3, pp. 603-610, 2004.
[26] M. Sun, E. W. Izaguirre, T. Funk, A. B. Hwang, J. Carver, S. Thompson, et. al. IEEE Nuclear Science Symposium Conference Record, pp. 2066-2069, 2006.
[27] G. L. Zeng, G. T. Gullberg, P. E. Christian, D. Gagnon. IEEE Transactions on Nuclear Science, vol. 49, no. 1, pp. 37-41, 2002.
[28] G. L. Zeng, G. T. Gullberg, P. E. Christian, D. Gagnon, C. H. Tung. IEEE Transactions on Nuclear Science, vol. 48, no. 1, pp. 117-124, 2001.
[29] G. L. Zeng, G. T. Gullberg. IEEE Transactions on Nuclear Science, vol. 46, no. 6, pp. 2111-2118, 1999.
[30] L. J. Meng, “An intensified EMCCD camera for low energy gamma ray imaging applications,” IEEE Transactions on Nuclear Science, vol. 53, no. 4, pp. 2376-2384, August 2006.
[31] G. Fu, Development of Novel Emission Tomography System (Urbana, IL: University of Illinois at Urbana-Champaign, PhD dissertation), 2011.
[32] F. van der Have, B. Vastenhouw, M. Rentmeester, F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Transactions on Medical Imaging, vol. 27, no. 7, pp. 960-971, July 2008.
[33] Y. C. Chen, System Calibration and Image Reconstruction for a New Small-Animal SPECT System (Tucson, AZ: University of Arizona, PhD dissertation), 2006.
[34] H. H. Barrett, and K. J. Myers, Foundations of Image Science, Wiley Interscience, Hoboken, N. J., 2004.
[35] L. A. Shepp, and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, 1982.
[36] H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 601-609, 1994.
[37] D.S. Lalush and B. M. Tsui, "Performance of ordered-subset reconstruction algorithms under conditions of extreme attenuation and truncation in myocardial SPECT," Journal of Nuclear Medicine, vol. 41, no. 4, pp. 737-744, 2000.
[38] Y. Wang, and B. M. W. Tsui, “Pinhole SPECT with different data acquisition geometries: usefulness of unified projection operators in homogeneous coordinates,” IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 298-308, 2007.
[39] M. W. Lee, and Y. C. Chen, “Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations,” Elsevier Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 737, pp. 122-134, 2014.
[40] B. Y. Huang, System Calibration and Imaging Model Construction of Single Photon Emission Microscope (Taoyuan, Taiwan: National Central University, Masters Thesis), 2017.
[41] M. A. Dell, "Radiation safety review for 511-keV emitters in nuclear medicine," Journal of Nuclear Medicine Technology, vol. 25, no. 2, pp. 12-17, 1997.
[42] M. W. Lee, System Calibrations and Configuration Optimizations of Small-Animal Pinhole SPECT Systems (Taoyuan, Taiwan: National Central University, PhD dissertation), 2016.
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2018-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明