博碩士論文 104229001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:54.198.246.164
姓名 楊仕莆(Shi-Pu Yang)  查詢紙本館藏   畢業系所 天文研究所
論文名稱
(Strong Gravitational Lensing in Modified Newtonian Dynamics)
相關論文
★ 宇宙射線在球形震波的加速★ 重力透鏡效應造成的類星體-星系關聯與星系-星系相關函數
★ 星際物質演化的研究★ 宇宙射線在恆星風的自相似解
★ 分子雲演化的二維模型★ 以2MASS近紅外資料研究太陽附近的疏散星團
★ 以二微米巡天觀測近紅外資料研究本銀河系結構★ 橢圓星系中基礎平面及等效半徑的多波段研究
★ 宇宙射線和磁流動力系統之不穩定性★ 初生星團的生存率
★ 橢圓星系外型與紅移關聯之研究★ 在不同均功參數下星團的擴散及核心的形成
★ 兩微米巡天數星所取得的銀河系資訊★ A numerical simulation survey on the outflow from the Galactic center
★ Galaxy Cluster Dynamics and Modified Newtonian Dynamics★ The destiny of a binary system under different mass loss scenarios
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 關於消失質量的問題,在 1930 年代開始被討論與研究,但直到 1980 左右,維拉·魯賓( Vera Rubin)發現了 螺旋星系中的平坦的旋轉曲線(Flat rotation curve),這樣的研究結果,讓我們重新思考關於宇宙組成的重大問題。 在當時大部分的人確信牛頓力學是完全正確的,因此他去尋找一種物質,它有質量但不與相互作用,他們稱之暗物質。 暗物質的假設已經被許多人所接受, 也絕了許多問題,更是現代宇宙學當中重要的一環。 但暗物質仍被一些人存疑,有許多人提出了新的看法,這當中最被認可的便是”修改牛頓力學(Modified Newtonian Dynamics, MOND)”。 MOND 的主要想法是在小加速度時,重力會超出牛頓力學的想像,因此他們認為牛頓力學必須修改。事實上, MOND 在解釋螺旋星系
中的平坦的旋轉曲線(Flat rotation curve)是非常成功的。而最近有更多的研究致力於橢圓星系的研究。 我們也對相對論當中的重力透鏡(Gravitational lensing),在橢圓星系中會如何表現很感興趣。因此我們再 MOND 基礎下,建立了一個輕微變形的球面系統,並針對強重力透鏡(Strong gravitational lensing)的圖像去進行分析。 然後我們利用數值分析寫成一個程式碼,使我們可以解決在 Bekenstein 方程式下(一種常被使用關於 MOND 的插值函數)圖像的位置。比較數值分析與現有的分析方式結果相當吻合。我們對大部分的參數進行大量的分析,包括強重力透鏡中,來源的位置、透鏡平面上質量分布略為的改變,配合上不同程度 MOND 的影響程度。我們的目標是提供一個類似書庫的系統並且未來能對實際的現象做更深入的研究。
摘要(英) The missing mass problem was first discussed in the 1930s. However, not until the 1970s and 1980s that the flat rotation curve of spiral galaxies was confirmed in quite a number of galaxies before the astronomy community realized that the missing mass problem is a genuine problem. The mainstream idea is Newtonian dynamics is intact and there is some form of matter which possesses mass but does not interact electromagnetically. It is usually called the dark matter model (or dark matter paradigm). Besides successful in resolving the missing mass problem, dark matter is also an important ingredient in modern cosmology. Nonetheless, it still faces some challenging problems. On the other hand, there is no lack of non-mainstream ideas tossing around. Particularly satisfactory is modified Newtonian dynamics (MOND), which maintains that gravity is stronger than Newtonian when the acceleration is small. It is very successful in explaining the flat rotation curve of spiral galaxies. Many studies of MOND were devoted to spiral galaxies. Recently, some more attentions are paid to elliptical galaxies. We are interested in the relativistic phenomenon gravitational lensing by elliptical galaxies. Base on a recent analysis on slightly deformed spherical systems in the framework of MOND, we investigate their strong lensing images. We develop a numerical code to solve for the image positions under the Bekenstein form (one commonly used MOND interpolation function). The numerical results agree well with the available analytical results. We do an extensive parameter space survey which includes the source position, the lens ellipticity and its orientation, and the degree of MOND. Our aim is to provide a library of cases and a systematic way to study real observations.
關鍵字(中) ★ 重力透鏡
★ 修改牛動力學
關鍵字(英) ★ Gravitational Lensing
★ Modified Newtonian Dynamics
★ MOND
論文目次 Table of contents
中文摘要 i
Abstract ii
致謝 iii
Table of contents iv
List of figures vi
List of Tables viii
1. Introduction 1
1.1 Missing mass 1
1.2 Dark matter 2
1.2.1 Cold Dark Matter (CDM) 2
1.2.2 ΛCDM 3
1.2.3 Some Challenges for ΛCDM 3
1.3 Modified Newtonian Dynamics (MOND) 4
1.4 Gravitational lensing 5
1.4.1 Strong gravitational lensing 6
1.4.2 Example for the gravitational lensing 7
2. Theory and model 10
2.1 Formulation of MOND 10
2.1.1 Spherical systems 10
2.1.2 Slightly deformed spherical systems 11
2.2 Mass models 12
2.2.1 η-4 model 13
2.2.2 Power-law model 13
3. Numerical code 18
3.1 Wolfram Mathematica 18
3.2 Analytical and numerical solution in Mathematica 18
3.2.1 Analytical solution 18
3.2.2 Numerical solution 18
3.3 Method of numerical integration 19
3.4 Parameters 20
3.5 Comparison of numerical solution to analytical solution 22
3.5.1 Comparison in η-4 model 22
3.5.2 Comparison in power-law model 22
4. Result and Discussion 24
4.1 MOND effect 24
4.1.1 η-4 model 24
4.1.2 Power-law model 24
4.2 Source 25
4.2.1 η-4 model 25
4.2.2 Power-law model 28
4.3 Lens orientation and deformation 30
4.3.1 η-4 model 30
4.3.2 Power-law 34
4.4 A real example ER0047-2808 36
5. Summary 39
References 42
Appendix 47
A.1 η-4 model 47
A.1.1 Source 47
A.1.2 Lens 50
A.2 Power-law model 55
A.2.1 Source 55
A.2.2 Lens 59
參考文獻 References
Árdís Elíasdóttir et al.,2007, ‘Where is the matter in the Merging Cluster Abell 2218?’, arXiv:0710.5636 [astro-ph]
Bartelmann, M.; Schneider, P., 2001, ‘Weak gravitational lensing.’, Physics Reports, 340, 291
Bekenstein, J., Milgrom, M., 1984, ‘Does the missing mass problem signal the breakdown of Newtonian gravity?’ , ApJ, 286, 7
Bekenstein, J., 2004, ‘Relativistic gravitation theory for the modified Newtonian dynamics paradigm.’, Phy. Rev. D., 70, 083509
Bell, Eric F.; de Jong, Roelof S., 2001, ‘Stellar Mass-to-Light Ratios and the Tully-Fisher Relation’ApJ, 550, 212
Bennett, C. L. et al., 2003a, ‘The Microwave Anisotropy Probe Mission.’, ApJ, 583, 1
Bennett, C. L. et al., 2003b, ‘First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results.’, ApJS, 148, 1
Binney, James, Tremaine, Scott. 1987, ‘Galactic Dynamics’, Princeton, NJ, Princeton University Press, 747
Bosma, A., 1981, ‘21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types.’, AJ, 86, 1825
Chiu, Mu-Chen; Ko, Chung-Ming; Tian, Yong; Zhao, Hongsheng, 2011, ‘Mass of galaxy lenses in modified gravity: Any need for dark mass?’ Phys. Rev. D, 83, 063523
Douglas Scott, Martin White, Joanne D. Cohn, Elena Pierpaoli, ‘Cosmological Difficulties with Modified Newtonian Dynamics (or: La Fin du MOND?)’, 2001, arXiv, e-print, [arXiv:astro-ph/0104435]
Famaey, Benoît, McGaugh, Stacy S., 2012, Living Rev. Relativity, 15, 10
Famaey, Benoît, McGaugh, Stacy S., 2013, ‘Challenges for ΛCDM and MOND.’ Journal of Physics: Conference Series, 437, 012001
Fukugita, Masataka, 2003, ‘The dark side.’, Nature, 422, 489
Hernquist, Lars, 1990, ‘An analytical model for spherical galaxies and bulges.’, ApJ, 356, 359
Jaffe, W., 1983, ‘A simple model for the distribution of light in spherical galaxies.’, MNRAS, 202, 995
Jones, Mark H., Lambourne, Robert J. A., 2004, ‘An introduction to galaxies and cosmology, by Mark H. Jones and Robert J.A. Lambourne. Co-published with The Open University, Milton Keynes.’, Cambridge, UK: Cambridge University Press.
Kalirai, Jason S. et al., 2010, ‘The SPLASH Survey: Internal Kinematics, Chemical Abundances, and Masses of the Andromeda I, II, III, VII, X, and XIV Dwarf Spheroidal Galaxies.’, ApJ, 711, 671
Kaplinghat, Manoj, Turner, Michael, 2002, ‘How Cold Dark Matter Theory Explains Milgrom′s Law’ApJ, 569, L19
Kenath Arun, S.B. Gudennavar, C. Sivaram, 2017, ‘Dark matter, dark energy, and alternate models: A review.’, Science Direct Advances in Space Research, 60, 166
King, L. J. et al., 1998, ‘A complete infrared Einstein ring in the gravitational lens system B1938 + 666.’, MNRAS,295, L41
Klimov, Yu. G., ‘The Deflection of Light Rays in the Gravitational Fields of Galaxies’ 1963, Soviet Physics Doklady, 8, 119
Ko, Chung-Ming, 2016, ‘On the Problem of Deformed Spherical Systems in Modified Newtonian Dynamics.’, ApJ, 821, 111
Kroupa, P., Famaey, B., de Boer, K. S., Dabringhausen, J., Pawlowski, M. S., Boily, C. M., Jerjen, H., Forbes, D., Hensler, G., Metz, M., ‘Local-Group tests of dark-matter concordance cosmology. Towards a new paradigm for structure formation.’, 2010, A&A, 523, A32
Langston, G. I. et al., 1989, ‘MG 1654+1346 - an Einstein Ring image of a quasar radio lobe.’, AJ, 97, 1283
Lee, Jounghun; Komatsu, Eiichiro, 2010, ‘Bullet Cluster: A Challenge to ΛCDM Cosmology.’ , ApJ, 718, 60
Liebes, Sidney,1964, ‘Gravitational Lenses’ Physical Review, 133, 835
Lynds, R., Petrosian, V.,1986, ‘Giant Luminous Arcs in Galaxy Clusters.’, Bulletin of the American Astronomical Society, 18, 1014
Magaña, Juan; Matos, Tonatiuh, 2012, ‘A brief Review of the Scalar Field Dark Matter model.’, Journal of Physics: Conference Series, 378, 012012
Massimo Meneghetti, 2006, ‘Introduction to Gravitational Lensing.’, lecture notes, University of Heidelberg
McGaugh, S. S., Schombert, J. M., Bothun, G. D., de Blok, W. J. G., 2000, ‘The Baryonic Tully-Fisher Relation.’, ApJ, 533, L99
McGaugh, Stacy S., 2005, ‘The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies.’, ApJ, 632, 859
Milgrom, M., 1983, ‘A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis’ ApJ, 270, 365
Milgrom, M., 2002, ‘Do Modified Newtonian Dynamics Follow from the Cold Dark Matter Paradigm?’, ApJ, 571, L81
More, Anupreeta et al., 2017, ‘A new quadruple gravitational lens from the Hyper Suprime-Cam Survey: the puzzle of HSC J115252+004733.’, MNRAS, 465, 2411
Moore, B., Governato, F., Quinn, T., Stadel, J., Lake, G., 1998, ‘Resolving the Structure of Cold Dark Matter Halos.’, ApJ, 499, L5
Moore, Ben, Ghigna, Sebastiano, Governato, Fabio, Lake, George, Quinn, Thomas, Stadel, Joachim, Tozzi, Paolo, 1999, ‘Dark Matter Substructure within Galactic Halos.’, ApJ, 524, L19
Navarro, Julio F., Frenk, Carlos S., White, Simon D. M., 1996, ‘The Structure of Cold Dark Matter Halos.’, ApJ, 462, 563
Navarro, Julio F., Frenk, Carlos S., White, Simon D. M., 1997, ‘A Universal Density Profile from Hierarchical Clustering.’, ApJ, 490, 493
Oort, J. H., 1932, ‘The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems.’, Bulletin of the Astronomical Institutes of the Netherlands, 6, 249
Paczy´nski. B., 1987, ‘Giant luminous arcs discovered in two clusters of galaxies.’, Nature, 325, 12
Peebles, P. J. E., Nusser, Adi, 2010, ‘Nearby galaxies as pointers to a better theory of cosmic evolution.’, Nature, 465, 565
Perlmutter, S et al.,1999, ‘Measurements of Ω and Λ from 42 High-Redshift Supernovae’ ApJ, 517, 565
Planck Collaboration et al., 2016, ‘Planck 2015 results. XIII. Cosmological parameters.’, A&A, 594, 13
Refregier, Alexandre, 2003, ‘Weak Gravitational Lensing by Large-Scale Structure.’, Annu. Rev. Astron. Astrophys., 41, 645
Refsdal, S, 1964, ‘The gravitational lens effect’ MNRAS, 128, 295
Reyes, R., Mandelbaum, R., Gunn, J. E., Nakajima, R., Seljak, U., Hirata, C. M., 2012, ‘Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing.’, MNRAS, 425, 2610
Riess, Adam G et al., 1998, ‘Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant.’, AJ, 116, 1009
Rosati, P. et al., 2009, ‘Multi-wavelength study of XMMU J2235.3-2557: the most massive galaxy cluster at z > 1.’, A&A, 508,583
Rubin, Vera C., Ford, W. Kent, Jr, 1970, ‘Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions.’, ApJ, 159, 379
Rubin, V. C., Ford, W. K., Jr., Thonnard, N., Burstein, D., 1982, ‘Rotational properties of 23 SB galaxies.’, ApJ, 261, 439
Sanders, Robert H., McGaugh, Stacy S., 2002, ‘Modified Newtonian Dynamics as an Alternative to Dark Matter.’, Annu. Rev. Astron. Astrophys, 40, 263
Schneider, Peter, Kochanek, Christopher, Wambsganss, Joachim, 2006, ‘Gravitational Lensing: Strong, Weak and Micro.’, Springer, Saas-Fee Advanced Course 33
Sheth, Ravi K., Diaferio, Antonaldo., 2011, ‘How unusual are the Shapley supercluster and the Sloan Great Wall?’, MNRAS, 417, 2938
Silk, J., 1967, ‘Fluctuations in the Primordial Fireball.’, Nature, 215, 1155
Simon, Joshua D.; Geha, Marla, 2007, ‘The Kinematics of the Ultra-faint Milky Way Satellites: Solving the Missing Satellite Problem.’, ApJ, 670, 313
Soucail, G., Fort, B., Mellier, Y., Picat, J. P., 1987, ‘A blue ring-like structure, in the center of the A 370 cluster of galaxies.’, A&A, 172, L14
Soucail, G., Mellier, Y., Fort, B.; Mathez, G., Cailloux, M., 1988, ‘The giant arc in A 370 - Spectroscopic evidence for gravitational lensing from a source at Z = 0.724.’, A&A, 191, L19
Spergel, D. N. et al., 2003, ‘First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters.’, ApJS, 148, 175
Steinmetz, Matthias, Navarro, Julio F., 1999, ‘The Cosmological Origin of the Tully-Fisher Relation’ ApJ, 513, 555
Stockton, A., 1980, ‘The lens galaxy of the twin QSO 0957+561.’ ApJ, 242, L141
Thompson, Robert, Nagamine, Kentaro, 2012, ‘Pairwise velocities of dark matter haloes: a test for the Λ cold dark matter model using the bullet cluster.’, MNRAS, 419, 3560
Tremaine, Scott et al., 1994, ‘A family of models for spherical stellar systems.’, AJ, 107, 634
Treu, Tommaso, 2010, ‘Strong Lensing by Galaxies.’, Annu. Rev. Astron. Astrophys., 48, 87
Tully, R. B., Fisher, J. R., 1977, ‘A new method of determining distances to galaxies.’, A&A, 54, 661
Walsh, D., Carswell, R. F., Weymann, R. J.,1979, ‘0957 + 561 A, B - Twin quasistellar objects or gravitational lens.’, Nature, 279, 31
Young, P., Gunn, J. E., Kristian, J., Oke, J. B., Westphal, J. A., 1980, ‘The double quasar Q0957 + 561 A, B - A gravitational lens image formed by a galaxy at Z = 0.39′, ApJ, 241, 507
Zwicky, F., 1937, ‘On the Masses of Nebulae and of Clusters of Nebulae’ ApJ, 86, 217
指導教授 高仲明(Chung-Ming Ko) 審核日期 2017-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明