博碩士論文 104232010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.242.25.198
姓名 廖彗汝(Hui-RU Liao)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 自我複製式可見光波段偏振分光鏡設計與製作
(Design and Fabrication of the Visible Light Autocloned Polarization Beam Splitters)
相關論文
★ 偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究★ 高功率脈衝磁控濺鍍技術鍍製高硬度光學多 層膜的研究
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-1-16以後開放)
摘要(中) 本研究使用自我複製技術(autocloning technique),並利用電子束蒸鍍系統(E-beam gun evaporation)輔以離子源助鍍(ion-assisted deposition)系統,製作自我複製結構膜層,能快速的鍍製自我複製結構,並能實現大面積鍍製。自我複製式的偏振分光鏡將較於傳統式偏振分光鏡,因其為平面結構,故能用於垂直入射。本研究在設計部分,以有限時域差分法(FDTD method),FDTD模擬軟體模擬自我複製結構之頻帶結構與穿透光譜。本研究在模擬方面分兩部分,第一部分為TE波頻帶結構,透過調整結構角度、膜層厚度比例、膜層厚度與基板結構週期,模擬出落在可見光波段內,最佳的頻帶寬度﹔第二部分模擬不同自我複製結構的TM波與TE波穿透光譜,透過調整膜層厚度、基板結構週期與不同膜層設計,並進行膜層厚度的優化,找出落在可見光波段內,有較大消光比與工作波長之光譜範圍。本研究在製程方面,成功利用干涉微影方法製作基板週期性結構,並利用雙電子束蒸鍍系統輔以離子源助鍍系統,成功鍍製二維自我複製式偏振分光鏡,工作波長在585 nm至645 nm之間,垂直入射時,最大消光比落在638.4 nm為115.1,平均消光比為27.9。
摘要(英) In this study, Ta2O5 /SiO2 two-dimensional autocloned polarization filter has been designed and fabricated by using electron beam gun evaporation with ion-beam- assisted deposition. Different from the traditional polarization beam splitters(PBSs), this autocloned photonic-crystal polarization filter is a flat type polarizer working at the normal incident angle.
In the filter design, we calculated the band structure and the transmittance spectrum of the filter by using finite-difference time-domain (FDTD) method. First, we simulated the bandwidth of the band structure in the visible wavelength by varying the structural angle, the proportion of the thin film thickness, the thickness of the thin film and the period of the substrate structure. Second, we simulated the transmittance spectra of the transverse electric (TE) wave and transverse magnetic (TM) wave with different autocloned structure. We found the better extinction ratio and working wavelength in the visible wavelength by adjusting the thickness of the thin film, the period of substrate structure and the design of the film layers. We also optimized the thin film thickness to find the better extinction ratio and working wavelength.
In the process of the filter fabrication, we fabricated the periodic structure of the substrate by interference lithography method successfully and the two-dimensional polarized filter by using electron beam gun evaporation with ion-beam-assisted deposition. The range of working wavelength is about 60 nm that is from 585 nm to 645 nm. The largest extinction ratio is 115.1 at 638.4 nm and the average extinction ratio is 27.9.
關鍵字(中) ★ 自我複製式
★ 偏振分光鏡
關鍵字(英) ★ Autocloned
★ Polarization Beam Splitters
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VIII
第一章 序論 1
1-1 研究背景 1
1-2 研究目的 3
1-3 本文架構 5
第二章 基礎理論 6
2-1 光子晶體理論 6
2-1-1 倒晶格與週期性函數 6
2-1-2 布洛赫定理 7
2-1-3 布理淵區、頻帶結構與能隙 7
2-2 有限時域差分法 (Finite-Difference Time-Domain method; FDTD) 9
2-3 自我複製結構成膜機制 17
第三章 二維光子晶體設計 20
3-1 角度與高低折射率材料比例之影響 21
3-2 相同膜層厚度下不同週期之影響 25
3-3 增加材料厚度之影響 26
3-4 光譜模擬 27
3-4-1 增加厚度 29
3-4-2 改變週期 32
3-4-3 調整厚度 34
3-4-4 抗反射膜(Anti-Reflection coating)之設計 37
3-4-5 優化 38
3-5 改變頂角角度之影響 40
3-6 改變入射光源角度之影響 42
第四章 儀器設備與製程 43
4-1 製程設備 43
4-2 量測儀器 46
4-3 元件製程流程 47
第五章 實驗結果 50
5-1 基板製程結果 50
5-2 鍍膜結果 52
5-2-1 控制調整層(shapping layer) 52
5-2-2 多層膜結構 53
5-3 光譜量測結果 55
第六章 結論與未來工作 60
參考文獻 61
參考文獻 [1]E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and
Electronics, " Phys Rev Lett 58, no. 20 (May 18 1987): 2059-62.
[2]S. John, "Strong Localization of Photons in Certain Disordered Dielectric
Superlattices ," Phys Rev Lett 58, no. 23 (Jun 08 1987): 2486-89.
[3]欒丕綱、陳啟昌,光子晶體─從蝴蝶翅膀到奈米光子學(台北市:五南圖書出版公司,2006,初版),第一章,2-31。
[4]王淳弘,「自我複製式偏振分光鏡製作與誤差分析」(碩士論文,國立中央大學,2010)。
[5]S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, "Fabrication of 3d Photonic Crystals by Autocloning and Its Applications,"Electronics and Communications inJapan (Part II: Electronics) 82, no. 9 (1999): 43-52.
[6]T. Sato, Y. Ohtera, N. Ishino, K. Miura, and S. Kawakami, "In-Plane Light Propagation in Ta2O5/SiO2 Autocloned Photonic Crystals," IEEE Journal of Quantum Electronics 38, no. 7(2002): 904-08.
[7]T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic
Crystals for the Visible Range Fabricated by Autocloning Technique and Their
Application," Optical and Quantum Electronics 34, no. 1 (January 01 2002): 63-70.
[8]Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, "Multichannel Photonic Crystal
Wavelength Filter Array for near-Infrared Wavelengths," Journal of Lightwave
Technology 25, no. 2 (2007): 499-503.
[9]翟光耀,「光子晶體偏振分光鏡設計與製作」(碩士論文,國立中央大學,2009)。
[10]L. Tao, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, "Design of a
Compact Photonic-Crystal-Based Polarizing Beam Splitter," IEEE Photonics Technology Letters 17, no. 7 (2005): 1435-37.
[11]X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization Beam Splitter Based
on a Two-Dimensional Photonic Crystal of Pillar Type," Applied Physics Letters 89, no.
17(2006): 171115.
[12]S. Kim, G. P. Nordin, J. Cai, and J. Jiang, "Ultracompact High-Efficiency Polarizing Beam Splitter with a Hybrid Photonic Crystal and Conventional Waveguide Structure," Optics Letters 28, no. 23 (2003/12/01 2003): 2384-86.
[13]Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic Crystal Polarisation Splitters," Electronics Letters 35, no. 15 (1999): 1271-72.
[14]張高德,「廣義光子晶體元件之研究與分析」(博士論文,國立中央大學,2007)。
[15]X. P. Feng, and Y. Arakawa, "Off-Plane Angle Dependence of Photonic Band Gap in a Two-Dimensional Photonic Crystal, " IEEE Journal of Quantum Electronics 32, no. 3 (1996): 535-42.
[16]F. Zheng, Z. Chen, and J. Zhang, "A Finite-Difference Time-Domain Method without the Courant Stability Conditions," IEEE Microwave and Guided Wave Letters 9, no. 11 (1999): 441-43.
[17]Y. Kane, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell′s Equations in Isotropic Media," IEEE Transactions on Antennas and Propagation 14, no. 3 (1966): 302-07.
[18]J. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves," Journal of Computational Physics 114, no. 2 (1994/10/01/ 1994): 185-200.
[19]S. D. Gedney, "An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of Fdtd Lattices," IEEE Transactions on Antennas and Propagation 44,no. 12 (1996): 1630-39.
[20]S. Kawakami , T. Kawashima, and T. Sato, "Mechanism of Shap Formation of
Three-Dimensional Periodic Nanostructures by Bias Sputtering," Applied Physics Letters 74, no. 3 (1999): 463-65.
[21]S. Tazawa, S. Matsuo, and K. Saito, "A General Characterization and Simulation
Method for Deposition and Etching Technology," IEEE Transactions on Semiconductor
Manufacturing 5, no. 1 (1992): 27-33.
[22]C. Rumpf, Raymond, Design and Optimization of Nano-Optical Elements by Coupling Fabrication to Optical Behavior, 2006.
[23]T. Kawashima, K. Miura, T. Sato, and S. Kawakami, "Self-Healing Effects in the
Fabrication Process of Photonic Crystals," Applied Physics Letters 77, no. 16 (2000):
2613-15.
[24]張德宏,「自我複製結構膜之設計、製作與應用」(博士論文,國立中央大學,2009)。
[25]李正中,薄膜光學與鍍膜技術(台北市;藝軒圖書出版社,2012,第七版),第六章,314-359。
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2018-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明