博碩士論文 104256019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.133.155.30
姓名 簡姿虹(Zih-Hong Jian)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 潛望鏡式三倍變焦鏡頭設計於手機內機構之厚度分析與探討
相關論文
★ 白光LED於住宅照明之設計與應用★ 超廣角車用鏡頭設計
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 光學變焦之軌跡優化控制★ LED光源暨LED與太陽光混和照明於室內照明之模擬與分析
★ 利用光展量概念之微型投影機光學設計方法與實作★ 光學顯微鏡之鏡頭設計
★ 手機上隱藏式指紋辨識設計★ DLP微型投影系統之光路設計
★ 高效率藍光碟片讀取頭★ 模組化雙波長光學讀寫頭的設計與光學讀寫頭應用在角度量測的研究
★ 數位相機之鏡頭設計★ 單光電偵測器之複合式光學讀寫頭
★ 三百萬畫素二點七五倍光學變焦手機鏡頭設計★ 稜鏡玻璃選取對色差的影響與校正
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文設計兩種手機鏡頭,分別為一千三百萬畫素與八百萬畫素三倍變焦潛望鏡式鏡頭。一千三百萬畫素影像感測器為OV13855,畫素大小為1.12 μm,變焦鏡頭焦距為5.909 mm 至 17.327 mm,半視角為9.685到26.567,F-number為3.05 ~ 5.5,像高為2.971 mm。八百萬畫素影像感測器為OV8856,畫素大小1.12 μm,變焦鏡頭焦距為4.514 mm 至 13.442 mm,半視角為9.710到27.000,F-number為3.05 ~ 5.5,像高為2.285 mm。
潛望鏡式手機變焦鏡頭設計必須埋入手機內,由於受限手機機構的厚度,當稜鏡厚度或鏡頭之鏡片口徑大小大於手機機構厚度時,則手機鏡頭無法放入手機內,假設稜鏡厚度或鏡片口徑之最大尺寸為鏡頭深度,則鏡頭深度必須小於手機機構厚度,才可置入手機內。
機構厚度與鏡頭F-number、入瞳口徑、與成像高度有關,一千三百萬畫素,成像高度為2.971 mm,機構厚度為14 mm。八百萬畫素,鏡頭成像高度由2.971 mm降到2.285 mm,機構厚度減少至10.8 mm;考量選用感測器比例為16:9,機構厚度再減少至 5.811 mm ;在變焦鏡頭之wide angle部分鏡片口徑較大,F-number由3.05增為3.5,機構厚度可再降低至 5.377 mm。最後使用五百萬畫素感測器,成像高度由2.971 mm降到1.923 mm,則機構厚度最後可調至 4.495 mm。
如果5.377mm沒辦法放進Iphone裡面,我們希望做到4.5mm以內,最後用500萬素來達到目的,使機構厚度能降到4.495mm。
摘要(英) This paper presents two kinds of 3X zoom lens design used for cell phone, including 13 million pixels and 8 million pixels of the cell phone. The 13 million pixel sensor is based on OV13855, the pixel size is 1.12 μm, the effective focal length of the zoom lens is 5.909 mm to 17.327 mm, the half angle is 9.685 degrees to 26.567 degrees, the F-number is 3.05 to 5.5, and the image height is 2.971 mm. The eight-megapixel sensor is using the CMOS sensor of the OV8856, with a pixel size of 1.12 μm. The zoom lens has a effective focal length of 4.514 mm to 13.442 mm, a half-view angle of 9.710 degrees to 27.000 degrees, an F-number of 3.05 to 5.5, and an image height of 2.285 mm.
Periscope-type cell phone zoom lens design must be placed into in the phone. Due to the limitation of the thickness of the cell phone, when the thickness of the prism or the aperture size of the lens is larger than the thickness of the cell phone, the cell phone lens cannot be placed in the cell phone. Assuming that the thickness of the prism or the maximum size of the lens aperture is the depth of the lens, the depth of the lens must be less than the thickness of the cell phone before it can be placed in the mobile phone.
The thickness of the mechanism is related to the lens F-number, the entrance pupil diameter, and the imaging height, 13 million pixels, the imaging height is 2.971 mm, and the mechanism thickness is 14 mm. With 8 million pixels, the lens imaging height is reduced from 2.971 mm to 2.285 mm, and the thickness of the mechanism is reduced to 10.8 mm. The ratio of the sensor is 16:9, and the thickness of the mechanism is reduced to 5.811 mm. In the wide angle part of the zoom lens The lens has a larger diameter, the F-number is increased from 3.05 to 3.5, and the thickness of the mechanism can be reduced to 5.377 mm. Finally, using a five-million-pixel sensor, the imaging height was reduced from 2.971 mm to 1.923 mm, and the thickness of the mechanism was finally adjusted to 4.495 mm.
If 5.377mm can′t be put into the Iphone, we hope to achieve within 4.5mm, and finally use 5 million to achieve the purpose, so that the thickness of the mechanism can be reduced to 4.495mm.
關鍵字(中) ★ 光學變焦
★ 潛望鏡式鏡頭設計
★ 直角稜鏡厚度
★ 有效口徑
關鍵字(英)
論文目次 目錄
摘要 I
Abstract II
致 謝 III
圖目錄 X
表目錄 XV
第一章 緒論 1
1-1研究動機 1
1-2 研究目的 2
1-3 文獻回顧 3
1-3-1學術論文 3
1-3-2美國專利 9
1-4 論文架構 11
第二章 基本原理介紹 12
2-1 參考光線的定義 12
2-2使用真實光線追跡顯示光線在曲面上之XY方向高度 13
2-3直角稜鏡與光路展開圖 (Tunnel Diagram) 14
2-4、像高、有效焦距與半視角關係 15
2-5 F-number與有效焦距、入瞳口徑之關係 16
2-6 非球面方程式 17
2-7 像方主光線角度(Chief ray angle in image space) 19
2-8 艾里斑(Airy disc) 20
2-9 成像品質介紹 21
2-9-1 MTF 21
第三章 曲面有效口徑判讀與取得 26
3-1潛望鏡式三倍變焦一千三百萬畫素鏡頭 26
3-1-1變焦鏡頭鏡片圖與三條參考光線(F1R2、F11R2、F11R3)追跡 26
3-1-2 EFL = 5.909 mm、EFL = 11.618 mm 、 EFL = 17.327 mm之三條參考光線追跡在曲面的高度 27
3-2潛望鏡式三倍變焦八百萬畫素鏡頭 28
3-2-1 變焦鏡頭鏡片圖、三條參考光線(F1R2、F15R2、F15R3)追跡 28
3-2-2 EFL = 4.514 mm、EFL = 8.950 mm 、 EFL = 13.442 mm之三條參考光線追跡在曲面的高度 29
第四章 潛望鏡式鏡頭設計 31
4-1 設計導論 31
4-2 設計規格 31
4-2-1影像感測器(Sensor) 31
4-2-2 變倍比 32
4-2-3像高、半視角、有效焦距計算 32
4-2-4 F-number 訂定 33
4-2-5 MTF 規範 33
4-2-6 |SMTF – TMTF| 34
4-2-7 橫向色差 34
4-2-8光學畸變 34
4-2-9電視畸變 34
4-2-10 相對照度 34
4-2-11 鏡頭長度 35
4-2-12 鏡頭厚度 35
4-2-13 像方主光線角度 35
4-2-14 波長選擇與權重 35
4-2-15 鏡片製造技術 35
4-2-16 鏡頭初階規格設計 37
4-3 起始值選取 38
4-4 設計與優化過程 40
4-4-1 初階規格設定 40
4-4-2改變參數與優化 40
4-4-3特別約束條件設定 42
4-4-4使用者約束條件設定與撰寫 44
4-4-5 調整MTF權重 45
4-4-6 擴大玻璃範圍 46
4-4-7 替換材料 47
第五章 潛望鏡式變焦鏡頭設計結果與討論 48
5-1 優化結果 48
5-1-1 三倍變焦一千三百萬畫素鏡頭 48
5-1-2 三倍變焦八百萬畫素鏡頭 52
5-2 鏡頭設計結果 55
5-2-1三倍變焦一千三百萬畫素鏡頭 55
5-2-2三倍變焦八百萬畫素鏡頭 56
5-3 成像品質分析 58
5-3-1潛望鏡式三倍變焦一千三百萬畫素鏡頭 58
5-3-2潛望鏡式三倍變焦八百萬畫素鏡頭 62
5-4 畸變分析 66
5-4-1潛望鏡式三倍變焦一千三百萬畫素鏡頭 66
5-3-2潛望鏡式三倍變焦八百萬畫素鏡頭 68
5-4橫向色差分析 70
5-4-1潛望鏡式三倍變焦一千三百萬畫素鏡頭 70
5-4-2潛望鏡式三倍變焦八百萬畫素鏡頭 72
5-5相對照度分析 74
5-5-1潛望鏡式三倍變焦一千三百萬畫素鏡頭 74
5-5-2潛望鏡式三倍變焦八百萬畫素鏡頭 75
5-6 ∣SMTF - TMTF∣ 76
5-6-1潛望鏡式三倍變焦一千三百萬畫素鏡頭 76
5-5-2潛望鏡式三倍變焦八百萬畫素鏡頭 77
5-7 像方主光線分析 79
5-7-1潛望鏡式三倍變焦一千三百萬畫素鏡頭 79
5-7-2潛望鏡式三倍變焦八百萬畫素鏡頭 79
5-8設計結果整理 80
5-8-1潛望鏡式三倍變焦一千三百萬畫素鏡頭 80
5-8-2潛望鏡式三倍變焦八百萬畫素鏡頭 82
5-9 公差分析 83
5-9-1潛望鏡式三倍變焦一千三百萬畫素鏡頭 84
5-9-2潛望鏡式三倍變焦八百萬畫素鏡頭 89
第六章 稜鏡厚度與鏡片口徑分析 94
6-1影像感測器4:3與16:9 94
6-2直角稜鏡厚度分析 95
6.2-1 圓對稱系統之稜鏡厚度 96
6-2-2 4:3矩形之稜鏡厚度 96
6-2-3 16:9矩形之稜鏡厚度 96
6-3手機機構厚度分析 97
6-3-1圓對稱系統之稜鏡厚度與鏡片口徑 97
6-3-2 4:3矩形影像感測器之稜鏡厚度與鏡片口徑 99
6-3-3 16:9矩形影像感測器之稜鏡厚度與鏡片口徑 100
6-3-4稜鏡厚度與鏡片口徑比較 101
第七章 結論與未來展望 102
參考文獻 104
參考文獻 [1] F. L.O. Roehrig, Y. Calif, “Dual Camera,” U.S. patent 2,666,374 (Jan. 19,1954).
[2] Sharp Corp. V602SH, http://www.sharp.co.jp
[3] R. I. Mercado, “Folded camera lens systems,” U.S. patent 9,557,627 (Jan. 31, 2017).
[4] K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 1-10 (2007).
[5] K. Zhang, J. Chang, H. Song, Y. Niu, "Structural design of off-axis aspheric surface reflective zoom optical system," Proc. SPIE 10616, (2017).
[6] R. K. Yang, C. P. Lin, G. D. J. Su, "Zoom system without moving element by using two liquid crystal lenses with spherical electrode", Proc. SPIE 10375,(2017).
[7] M. Aschwanden, M. Bueeler, “Optical zoom lens with two liquid lens,” U.S.patent 20,160,202,455 (Jul. 14, 2016).
[8] H. Sato, S. Yamaguchi, "Optical design of digital camera zoom lenses employing plastic lens elements," Proc. SPIE 6196 (2006).
[9] S. C. Park, Y. J. Jo, “op-slim zoom lens design for a 3X mobile camera,”J. Korean Phys. Soc. 52, 1048-1056 (2008).
[10] S. C. Park, S. H. Lee, J. G. Kim, “Compact zoom lens design for a 5X mobile camera using prism,” J. Opt. Soc. Korea 13, 206-212 (2009).
[11] S. C. Park, S. H. Lee, “Zoom lens design for a 10X slim camera using successive procedures,” J. Opt. Soc. Korea 17, 518-524 (2013).
[12] W. S. Sun, C. L. Tien, J. W. Pan, Y. H. Chao, P. Y. Chu, "Optimization design of periscope type 3X zoom lens design for a five megapixel cellphone camera," Proc. SPIE 10150 (2016).
[13] K. Kojima, “Taking lens apparatus,” U.S. patent 7,508,595 (May 24, 2009).
[14] M. Sueyoshi, ”Zoom lens, and an imaging apparatus using such zoom lens,” U.S. patent 7,100,186 (Sep. 19, 2006).
[15] H. Sato, T. Matsui, ”Zoom lens and image pickup apparatus,” U.S. patent 7,242,529 (Jul. 10, 2007).
[16] E. Shirota, ”Zoom lens and imaging apparatus using the same,” U.S. patent 7,593,168 (Sep. 22, 2009).
[17] Y. Souma, ”Zoom lens, image pickup apparatus and digital equipment,” U.S. patent 7,360,139 (Dec. 8, 2009).
[18] E. Shirota, “Image pickup apparatus having optical path reflecting zoom lens system,” U.S. patent7,643,223 (Jan.5,2010)
[19] M. Morooka, H. Nagaoka, E. Shirota, M. Katakura, ”Image pickup apparatus having wide angle zoom lens system,” U.S. patent 7,599,125 (Oct. 6, 2009).
[20] S. Chia, ”Compact zoom lens system and image pickup device with the same,” U.S. patent 8,184,378 (May. 22, 2012).
[21] M. Katayose, K. Ono, H. Nagaoka, K. Hayakawa, ”Zoom lens system for image pickup apparatus,” U.S. patent 8,432,464 (Apr. 30, 2013).
[22] W. Hackemer, ”Miniature zoom lens,” U.S. patent 8,605,371 (Dec. 10, 2013).
[23] K. C. Wang, K. S. Hung, H. T. Chen, ”Zoom lens and zoom lens module,” U.S. patent 9,140,880 (Sep. 22, 2015).
[24] J. P. Seo, ”Zoom lens system and image pickup apparatus,” U.S. patent 8,896,942 (Nov. 25, 2014).
[25] R. Tomioka, ”Zoom lens and imaging apparatus,” U.S. patent 9,568,715 (Feb. 14, 2017).
[26] Y. Matsumura, T. Iwashita, Y. Kurioka, S. Yamaguchi, ”Zoom lens system,imaging device and camera,” U.S. patent 8,320,051 (Jan. 31, 2017).
[27] S. Mihara, H. Konishi, T. Hanzawa, M. Watanabe, A. Ishii, T. Takeyama, A.ImaMURA, ”Electronic image pickup system,” U.S. patent 9,696,524 (Jul. 4, 2017).
[28] Synopsys Inc. ”Lens system setup,” in Code V Reference Manual, ver11.1 (2017).
[29] Synopsys Inc. ”Diagnostic analysis,” in Code V Reference Manual, ver11.1 (2017).
[30] W. S. Sun, T. X. Lee, C. C. Sun, C. H. Lin and C. Y. Chen, “Design of miniature HD-DVD optical pick-up head using a Penta prism,” J. Mod. Opt.52(5), 775-789 (2005).
[31] W. S. Sun, C. L. Tien, J. W. Pan, K. C. Huang, P. Y. Chu, “Simulation of autofocus lens design for a cell phone camera with object distance from infinity to 9.754 mm,” Appl. Opt. 54, E203-E209 (2015).
[32] D. Malacara, Optical Shop Testing (A Wiley-Interscience, 1991), 2nd edit.
[33] Micro lens, https://goo.gl/CLJkiB.
[34] Airy disk, http://goo.gl/6XCPV9.
[35] Joseph W. Goodman, “Introduction to Fourier Optics” , McGraw-Hill, New York (1996).
[36]牟益弘,「三百萬畫素二點七五倍光學變焦手機鏡頭設計」,國立中央大學光電科學研究所,碩士論文(2008).
[37] OmniVision, “OV13855,” in image sensor, https://www.ovt.com/.
[38] OmniVision, “OV18856,” in image sensor, https://www.ovt.com/.
[39] W. S. Sun, P. Y. Chu, C. L. Tien and M. F. Chung, “Zoom lens design for 10.2-megapixel APS-C digital SLR cameras,” Appl. Opt. 56(3), 446-456(2017).
指導教授 孫文信(Wen-Shing Sun) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明