博碩士論文 104286005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.219.220.180
姓名 李祈鋒(Chi-Feng Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 彈性立方相位板延伸景深之研究
(A Study of Flexible Cubic Phase Plate for Extension of the Depth of Field)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 傳統的光學系統的景深可以藉由降低光焦度、增加最小模糊圈容許度或是提高系統複雜度等方式來延伸。隨著繞射理論的興起,近年來許多研究開始發展波前編碼技術,許多研究利用了各種形式的相位元件,放置於孔徑光闌或出瞳,以延伸非同調光學系統中的景深。然而,波前編碼技術仍遭遇了一些困難,例如,將相位元件放置在孔徑光闌或出瞳的位置並非適用於各種系統,因為這會導致相位元件與系統機構或相鄰的透鏡互相碰撞。另外,若出瞳的位置並非位於後焦區域,則無法正確的調製波前。因此,在本論文中,本研究以立方相位板為例,通過調整立方相位板的立方係數與折射率,來使該元件可以彈性化地改變放置位置,或是於透鏡表面調變波前,同時保有相同的編碼強度,以維持正確的編碼結果。本論文以反射式、穿透式與投影式的光學系統來呈現彈性立方相位板與波前編碼之應用。首先,以反射式望遠鏡為例,立方相位板的位置改變後,該元件的直徑縮小了近三倍,並且多項式表面的立方係數提高了兩個數量級,因此,在尺寸縮小與精度降低的情況下,以減輕製造困難。再來,對顯微鏡物鏡的例子來說,本研究於透鏡表面上使用立方相位調製用以替換單個孔徑光闌的立方相位板,解決了在某些情況下會與光學元件和機械裝置發生碰撞之情形,並且降低了組裝難度。所以,具有靈活性且不損失照明水平的顯微鏡亦可以提高顯微學應用的效率。然而,考慮到離軸像差之劇烈影響,立方相位板應用在非近軸視場角的光學系統時,其效能相當受限。因此,本論文以雙高斯系統為例,提出了分離立方相位板於不同透鏡表面之方法。此方法利用不同的分配因子來調整不同的透鏡表面的編碼強度,以使得相位變化得以接近獨立於各個視場。所以,在立方相位板的位置、折射率於立方係數皆可調整的情況下,本論文以理論與應用呈現了彈性立方相位板延伸景深的可行性。最後,在不受限於立方相位板必須放置在孔徑光闌的限制條件下,本論文將立方係數應用至凹面鏡上以呈現波前編碼穿透式顯示器之應用,同時延伸投影影像之景深,該研究利用反向波前編碼程序使得人眼無需來回對焦於物體與投影影像以提高安全性。
摘要(英) The depth of field (DOF) in traditional optical systems is difficult to be extended without considering the reduction of the optical power or increase of the system complexity. In recent years, with the rise of diffraction theory, many researchers developed wavefront coding (WFC) technique and employed various forms of phase elements to extend the DOF by placing it in the aperture stop or exit pupil of an incoherent optical system. However, the WFC technique encounters some issues. For example, the phase element placed in the aperture stop is not physically possible for various systems since it will cause the phase element to collide with the mechanical structure or adjacent lenses. In addition, if the exit pupil with the phase element is not located in the region of the back focal length, the wavefront cannot be modulated correctly. Therefore, this thesis takes the cubic phase plate (CPP) as an example by adjusting its position, cubic coefficient, and refractive index to accomplish the application of flexibility; The CPP can be flexibly changed in its placement position while maintaining the same coding strength to get the correct coding result. First, taking a reflecting telescope as an example. Once the position of the CPP is changed, the diameter of the CPP is reduced by nearly three times, and the cubic coefficient of the polynomial surface is increased by two orders of magnitude. Therefore, the difficulty of manufacturing is eased when the precision is reduced. Second, for the example of the microscope, this thesis employs the CPP on the surface of the optical components and eliminates the CPP in the aperture stop, which solves the problem of collisions with optical components and mechanical structure in some cases, thus the assembly difficulty can be reduced. Therefore, the microscope with flexibility can also improve the efficiency of microscopy applications without loss of illumination level. However, when the CPP is employed in these optical systems, its performance is quite limited due to the severe effects of the off-axis field of view and aberrations. Therefore, this thesis proposes a method to separate the CPP and assign it on different surfaces of lenses by taking the Double-Gauss system as an example. Different distribution factors are applied to adjust the coding strength of different surfaces of lenses with cubic coefficients so that the phase function is nearly independent of the field of view. Therefore, under the condition that the position of the CPP, refractive index and cubic coefficient can be adjusted, this thesis presents the feasibility of the flexibility of the CPP to extend the DOF. Finally, without the restriction that the CPP must be placed in the aperture stop, this thesis also presents the application of a WFC see-through display to extend the DOF of the projected image by applying the cubic coefficient in the concave mirror. This research uses the inverted WFC process, the technique eliminates the requirement that the human eyes focus between the object and projected image, meanwhile, the safety can be improved.
關鍵字(中) ★ 波前編碼
★ 光學設計
★ 延伸景深
★ 立方相位板
關鍵字(英) ★ Wavefront coding
★ Optical design
★ Extended depth of field
★ Cubic phase plate
論文目次 中文提要 …………………………………………………………… i
英文提要 …………………………………………………………… iii
誌謝 …………………………………………………………… v
目錄 …………………………………………………………… vi
圖目錄 …………………………………………………………… viii
表目錄 …………………………………………………………… x
符號說明 …………………………………………………………… xi
一、 緒論……………………………………………………… 1
1-1 研究背景………………………………………………… 1
1-2 研究目的………………………………………………… 9
二、 研究理論………………………………………………… 12
2-1 景深理論………………………………………………… 12
2-2 波前編碼理論…………………………………………… 17
2-3 彈性立方相位板之應用………………………………… 27
2-3-1 立方相位板之位置……………………………………… 27
2-3-2 立方相位板之分離……………………………………… 31
2-3-3 點擴散函數的相似性評估……………………………… 35
三、 成像系統之光學設計與模擬…………………………… 36
3-1 反射望遠鏡之範例……………………………………… 37
3-1-1 反射望遠鏡之鏡頭架構………………………………… 37
3-1-2 立方相位板的位置和立方係數………………………… 39
3-1-3 影像處理………………………………………………… 46
3-2 顯微鏡之範例…………………………………………… 50
3-2-1 顯微鏡之架構…………………………………………… 50
3-2-2 立方相位板的位置和立方係數………………………… 51
3-2-3 影像處理………………………………………………… 56
3-3 雙高斯鏡頭之範例……………………………………… 60
3-3-1 立方相位板之拆解……………………………………… 62
3-3-2 影像處理………………………………………………… 67
四、 波前編碼穿透式顯示器………………………………… 70
4-1 穿透式顯示器之景深…………………………………… 70
4-2 波前編碼穿透式顯示器之設計………………………… 71
4-3 波前編碼穿透式顯示器之模擬結果…………………… 75
五、 結論……………………………………………………… 80
參考文獻 …………………………………………………………… 83
參考文獻 1. Edward R. Dowski Jr. and Gregory E. Johnson, “Wavefront coding: a modern method of achieving high-performance and/or low-cost imaging systems,” Proc. SPIE, Vol. 3779, pp. 137–145 (1999).
2. Anat Levin, Rob Fergus, Fre ́do Durand, and William T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Transactions on Graphics, Vol. 26, Issue. 3, pp. 70:1–70:10 (2007).
3. Harel Haim, Alex Bronstein and Emanuel Marom, “Computational multi-focus imaging combining sparse model with color dependent phase mask,” Opt. Express Vol. 23, pp. 24547–24556 (2015).
4. David Stoker, Jan van der Laan, Eric Lavelle, Christopher Sakai, and Jonathan Wedd, ”A computational photography shootout: Wavefront coding vs. lattice focal imaging," 2014 IEEE International Conference on Image Processing (ICIP), pp. 31-35 (2014). doi: 10.1109/ICIP.2014.7025005
5. Kartik Venkataraman, Dan Lelescu, Jacques Duparre ́, Andrew McMahon, Gabriel Molina, Priyam Chatterjee, and Robert Mullis, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array, ACM Transactions on Graphics,” Vol. 32, Issue 6, pp. 1–13 (2013).
6. Daisuke Iwai, Shoichiro Mihara, and Kosuke Sato, “Extended Depth-of-Field Projector by Fast Focal Sweep Projection,” IEEE Transactions on Visualization and Computer Graphics, Vol. 21, issue 4, pp. 462-470 (2015). doi: 10.1109/TVCG.2015.2391861
7. N. Hasan, M. Karkhanis, C. Ghosh, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, "Lightweight smart autofocusing eyeglasses," Proc. SPIE, Vol. 10545, MOEMS and Miniaturized Systems XVII, pp. 1054507-1-1054507-6, (2018). https://doi.org/10.1117/12.2300737
8. Edward R. Dowski and W. Thomas Cathey, “Extended depth of field through wave-front coding,” Applied Optics. Vo. 34, Issue 11, pp. 1859-1866 (1995).
9. Mads Demenikov, Ewan Findlay, and Andrew R. Harvey, “Miniaturization of zoom lenses with a single moving element,” Optics Express, Vol. 17, Issue 8, pp. 6118-6127 (2009).
10. Chuan-Chung Chang and Cheng-Chung Lee (2010), “Effect of a spoke surface error on a phase mask in a computational imaging system,“ Journal of Modern Optics, Vol. 57, issue 4, pp. 316-324 (2010). DOI: 10.1080/09500341003615683
11. Jose A. Araiza-Duran, Esteban Luna, Alejandro Cornejo, and Joel Herrera, “Wavefront coding applied to a two-mirror telescope,” Proc. SPIE, Vol. 9145, Ground-based and Airborne Telescopes V, pp. 91453N-1-91453N-7 (2014).
12. Sudhakar Prasad, V. Paul Pauca, Robert J. Plemmons, Todd C. Torgersen, and Joseph van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE, Vol. 5559, Advanced Signal Processing Algorithms, Architectures, and Implementations XIV, pp. 335–345 (2004).
13. Sheng-Hsun Hsieh, Zih-Hao Lian, Chong-Min Chang, and Chung-Hao Tien, “The influence of phase mask position upon EDOF system,” Proc. SPIE, Vol. 8842, pp. 884207-7 -1-884207-7 (2013).
14. Mitsuhiko Ohta, Koichi Sakita, Takeshi Shimano, and Akito Sakemoto, “Rotationally symmetric wavefront coding for extended depth of focus with annular phase mask, “Japanese Journal of Applied Physics, Vol. 54, No. 9S, pp. 09ME03-1-09ME03-7 (2015).
15. Sara Bradburn, Wade Thomas Cathey, and Edward R. Dowski, Jr, “Realizations of Focus Invariance in Optical/Digital Systems with Wavefront Coding”, Applied Optics Vol. 36, Issue 35, pp. 9157-9166 (1997).
16. Sergey Y. Yurish, “Advances in Optics: Reviews”, Book Series, Vol. 4 (2019).
17. Albertina Castro, Jorge Ojeda-Castañeda, and Adolf W. Lohmann, "Bow-tie effect: differential operator," Applied Optics, Vol. 45, Issue 30, pp. 7878-7884 (2006).
18. Hui Zhao and Yingcai Li, "Optimized sinusoidal phase mask to extend the depth of field of an incoherent imaging system,” Optics Letters, Vol. 35, Issue 2, pp. 267-269 (2010).
19. Hui Zhao and Yingcai Li, “Performance of an improved logarithmic phase mask with optimized parameters in a wavefront-coding system,” Applied Optics, Vol. 49, Issue 2, pp. 229-238 (2010).
20. Wanli Chi and Nicholas George, "Electronic imaging using a logarithmic asphere," Optics Letters, Vol. 26, Issue 12, pp. 875-877 (2001).
21. Kaiqin Chu, Nicholas George, and Wanli Chi, "Incoherently combining logarithmic aspheric lenses for extended depth of field,” Applied Optics, Vol. 48, Issue 28, pp. 5371-5379 (2009).
22. Hui Zhao, Qi Li, and Huajun Feng, "Improved logarithmic phase mask to extend the depth of field of an incoherent imaging system,” Optics Letters, Vol. 33, Issue 11, pp. 1171-1173 (2008).
23. Mark S. Mirotznik, Joseph van der Gracht, David Pustai, and Scott Mathews, "Design of cubic-phase optical elements using subwavelength microstructures,” Optics Express, Vol. 16, Issue 2, pp. 1250-1259 (2008).
24. Yazid E. Tohme, J. A. Lowe, Moore, and A. Winchester, “Machining of Freeform Optical Surfaces by Slow Slide Servo Method.” (2003).
25. Qingguo Yang, Liren Liu, and Jianfeng Sun, “Optimized phase pupil masks for extended depth of field, Optics, ” Optics Communications, Vol. 272, Issue 1, pp. 56-66 (2007). DOI:10.1016/j.optcom.2006.11.021
26. Yasuhisa Takahashi and Shinichi Komatsu, “Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging”, Optics Letters, Vol. 33, Issue 13, pp. 1515-1517 (2008) .
27. Feng Zhou, Guangwei Li, Haitao Zhang, and Dongsheng Wang, "Rational phase mask to extend the depth of field in optical-digital hybrid imaging systems,” Optics Letters, Vol. 34, Issue 3, pp. 380-382 (2009).
28. Sherif S. Sherif and Peter Török, “Pupil plane masks for super-resolution in heighten focusing,” Journal of Modern Optics, Vol. 51, Issue. 13, pp. 2007-2019 (2004). DOI:10.1080/09500340410001670929
29. Eyal Ben-Eliezer, Zeev Zalevsky, Emanuel Marom1 and Naim Konforti, “All-optical extended depth of field imaging system,“ Journal of Optics A: Pure and Applied Optics , Vol. 5, No. 5, pp. S164-S169 (2003).
30. Wei-Hung Su, Chun-Hsiang Hsu, Wei-Chia Su, and Jung-Ping Liu, "Projected fringe profilometry using a liquid-crystal spatial light modulator to extend the depth measuring range,” Optics Express, Vol. 19, Issue 4, pp. 3272-3283 (2011).
31. W. Thomas Cathey and Edward R. Dowski, “New paradigm for imaging systems,” Applied Optics, Vol. 41, Issue 29, pp. 6080-6092 (2002).
32. Chi-Feng Lee and Cheng-Chung Lee, "Application of a cubic phase plate to a reflecting telescope for extension of depth of field,” Applied Optics, Vol. 59, Issue 14, pp. 4410-4415 (2020).
33. Mads Demenikov, Gonzalo Muyo, and Andrew R. Harvey, "Experimental demonstration of continuously variable optical encoding in a hybrid imaging system," Optics Letters, Vol. 35, Issue 12, pp. 2100-2102 (2010)
34. Török, Peter, Kao and Fu-Jen, “Optical Imaging and Microscopy: Techniques and advanced systems, “ (Springer 2007).
35. Tingyu Zhao, Zi Ye, Wenzi Zhang, Weiwei Huang, Feihong Yu, “Design of objective lenses to extend the depth of field based on wavefront coding,” Proc. SPIE, Vol. 6834, pp. 683414-1-683414-8 (2007).
36. Sherif S. Sherif, W. Thomas Cathey, and Ed R. Dowski, "Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Applied Optics, Vol. 43, Issue 13, pp. 2709-2721 (2004).
37. Kenneth Kubala, Edward Dowski, and W. Thomas Cathey, "Reducing complexity in computational imaging systems,” Optics Express, Vol. 11, Issue 18, pp. 2102-2108 (2003).
38. Mads Demenikov and Andrew R. Harvey, "Image artifacts in hybrid imaging systems with a cubic phase mask,” Optics Express ,Vol. 18, Issue 8, pp. 8207-8212 (2010).
39. M Roche, “Introduction to Wavefront Coding for Incoherent Imaging,” EAS Publications Series, Vol. 59, pp. 77–92 (2013).
40. Dong-mei Zhou, Hao-Bo Cheng, Hon-Yuen Tam, Yongfu Wen and Xu Ye, “Extending the depth of field of integral imaging system by employing cubic phase plate,“ Optik, Vol. 124, Issue 24, Pages 7065-7069 (2013).
41. Gonzalo Muyo and Andy R. Harvey, "Decomposition of the optical transfer function: wavefront coding imaging systems,” Optics Letters, Vol. 30, Issue 20, pp. 2715-2717 (2005).
42. Saeed Bagheri, Paulo E. X. Silveira, and Daniela Pucci de Farias, "Analytical optimal solution of the extension of the depth of field using cubic-phase wavefront coding. Part I. Reduced-complexity approximate representation of the modulation transfer function,” Journal of the Optical Society of America A, Vol. 25, Issue 5, pp. 1051-1063 (2008).
43. Eric J. Tremblay, Joel Rutkowski, Inga Tamayo, Paulo E. X. Silveira, Ronald A. Stack, Rick L. Morrison, Mark A. Neifeld, Yeshaiyahu Fainman, and Joseph E. Ford, "Relaxing the alignment and fabrication tolerances of thin annular folded imaging systems using wavefront coding,” Applied Optics, Vol. 46, Issue 27, pp. 6751-6758 (2007).
44. Chi-Feng Lee and Cheng-Chung Lee, “Microscope with Extension of the Depth of Field by Employing a Cubic Phase Plate on the Surface of Lens,” Results in Optics, Vol. 4 (2021). DOI 10.1016/j.rio.2021.100107
45. Avinash Kumar and Narendra Ahuja, "On the Equivalence of Moving Entrance Pupil and Radial Distortion for Camera Calibration," 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, INSPEC Accession Number: 15801715, pp. 2345-2353 (2015).
46. Samir Mezouari and Andrew R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Optics Letters, Vol. 28, Issue 10, pp. 771-773 (2003).
47. Samir Mezouari, Gonzalo Muyo, and Andrew R. Harvey, “Circularly symmetric phase filters for control of primary third-order aberrations: coma and astigmatism,” Journal of the Optical Society of America A, Vol. 23, Issue 5, pp. 1058-1062 (2006).
48. Warren J. Smith, Modern Optical Engineering, 4th Edition (McGraw-Hill, 2008).
49. Sara C. Tucker, W. Thomas Cathey, and Edward R. Dowski, "Extended depth of field and aberration control for inexpensive digital microscope systems,” Optics Express, Vol. 4, Issue 11, pp. 467-474 (1999).
50. Hans B. Wach, Edward R. Dowski, and W. Thomas Cathey, "Control of chromatic focal shift through wave-front coding,” Applied Optics Vol. 37, Issue 23, pp. 5359-5367 (1998).
51. G Muyo and A R Harvey, “The effect of detector sampling in wavefront-coded imaging systems,” Journal of Optics A: Pure and Applied Optics, Vol. 11, Issue. 5, No. 054002 (2009).
52. Saeed Bagheri, Paulo E.X. Silveira, and George Barbastathis, "Signal-to-noise-ratio limit to the depth-of-field extension for imaging systems with an arbitrary pupil function,” Journal of the Optical Society of America A, Vol. 26, Issue 4, pp. 895-908 (2009).
53. Paulo E. X. Silveira and Ramkumar Narayanswamy, "Signal-to-noise analysis of task-based imaging systems with defocus,” Applied Optics, Vol. 45, Issue 13, pp. 2924-2934 (2006).
54. Wenzi Zhang, Zi Ye, Yanping Chen, Tingyu Zhao, and Feihong Yu, "Ray aberrations analysis for phase plates illuminated by off-axis collimated beams,” Optics Express, Vol. 15, Issue 6, pp. 3031-3046 (2007).
55. Tom Vettenburg and Andrew R. Harvey, "Holistic optical-digital hybrid-imaging design:wide-field reflective imaging,” Applied Optics, Vol. 52, Issue 17, pp. 3931-3936 (2013).
56. Pantazis Mouroulis and John Macdonald, Geometrical Optics and Optical Design (New York Oxford, OXFORD UNIVERSITY PRESS, 1997).
57. https://www.sciencedirect.com/topics/computer-science/nyquist-frequency
58. James J. Condon and Scott M. Ransom, Essential Radio Astronomy (Princeton University Press, 2016).
59. John W. Leis, Digital Signal Processing Using MATLAB for Students and Researchers (John Wiley & Sons, Inc., 2011).
60. H. Bartelt, J. Ojeda-Castañeda, and Enrique E. Sicre, “Misfocus tolerance seen by simple inspection of the ambiguity function,” Applied Optics, Vol. 23, Issue 16, pp. 2693-2696 (1984).
61. Tom Vettenburg, Andrew Wood, Nicholas Bustin, Andrew R. Harvey, “Optimality of pupil-phase profiles for increasing the defocus tolerance of hybrid digital-optical imaging systems,” Proc. SPIE, Vol. 7429, Novel Optical Systems Design and Optimization XII, pp. 742903-1-742903-8 (2009).
62. W. Thomas Cathey, B. Roy Frieden, William T. Rhodes, and Craig K. Rushforth, ‘‘Image gathering and processing for enhanced resolution,’’ Journal of the Optical Society of America A, Vol. 1, Issue 3, pp. 241-250 (1984).
63. Charles Cook, Marvin Bernfeld, Radar Signals an Introduction To Theory & Application (Academic, New York, 1967).
64. August W. Rihaczek, Principles of High Resolution Radar (McGraw-Hill, New York, 1969).
65. K. Brenner, A. Lohmann, J. Ojeda-Castaneda, ‘‘The ambiguity function as a polar display of the OTF,’’ Optics Communications, Vol. 44, pp. 323–326 (1983).
66. Joseph W. Goodman, Introduction to Fourier Optics, Third Edition (Roberts & Company Publishers, 2005).
67. Ross D. Uthoff, Rachel N. Ulanch, Kaitlyn E. Williams, Liliana Ruiz Diaz, Page King, and R. John Koshel "Designing a freeform optic for oblique illumination," Proc. SPIE Vol. 10590, International Optical Design Conference 2017, pp. 105900X (2017).
68. Kaitlyn Williams, Parametrizing Freeform Optical Surfaces for the Optimized Design of Imaging and Illumination Systems (ProQuest Dissertations Publishing, 2017).
69. K. Bryant, R. Cassin, L. Chaloux, Y. Tohme, D. Puczek, G. Dunn, H. Takeuchi, “Freeform Cubic Phase Plate,” CONVERGENCE, Second Quarter 2004, Vol. 12, No. 2 (2004).
70. 張銓仲, “相位編碼元件精度對景深擴張範圍的影響,” 國立中央大學, 博士論文 (2010).
71. Hui Zhao and Yingcai Li, "Approximate analytical optical transfer function for a wavefront-coded imaging system with two-dimensional rectangularly separable phase masks,” Optical Engineering, Vol. 49(9), 093201-1-093201-10 (2010).
72. Saeed Bagheri, Paulo E. X. Silveira, Ramkumar Narayanswamy, and Daniela Pucci de Farias, "Analytical optical solution of the extension of the depth of field using cubic-phase wavefront coding. Part II. Design and optimization of the cubic phase,” Journal of the Optical Society of America A, Vol. 25, Issue 5, pp. 1064-1074 (2008).
73. Tom Vettenburg, Nicholas Bustin, and Andrew R. Harvey, “Fidelity optimization for aberration-tolerant hybrid imaging systems,” Optics Express, Vol. 18, Issue 9, pp. 9220-9228 (2010).
74. https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
75. Zhou Wang and Alan C. Bovik, “Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures,” IEEE Signal Processing Magazine, INSPEC Accession Number: 10475193, Vol. 26, Issue 1, pp. 98 - 117 (2009).
76. https://www.mathworks.com/help/images/ref/ssim.html
77. Enrique González-Amador, Alfonso Padilla-Vivanco, Justo Arines, Miguel Olvera-Angeles and Eva Acosta, “Choice of Jacobi–Fourier phase masks for wavefront coding under different f-number,” Japanese Journal of Applied Physics, Vol. 59, No. SO59, SOOD04-1-SOOD04-6 (2020).
78. Damien P. Kelly, Bryan M. Hennelly, John T. Sheridan, William T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. Part II: 3-D system analysis, “Optics Communications, Vol. 263, Issue 2, pp. 180-188 (2006).
79. https://en.wikipedia.org/wiki/Correlation_and_dependence
80. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, Digital Image Processing Using MATLAB, 2nd Edition (2011).
81. National Institutes of Health. Zebrafish Scales. https://flic.kr/p/2j6R1vS, 2020.
82. Ling Wang, Bei Chen, Chunhui Yu, and Wanjing Ma, “A Review of Automotive Head-Up Display”, 19th COTA International Conference of Transportation Professionals (2019). DOI: 10.1061/9780784482292.052.
83. Sebastian Rauh, Daniel Zsebedits, Efim Tamplon, Stephan Bolch and Gerrit Meixner, "Using Google Glass for mobile maintenance and calibration tasks in the AUDI A8 production line," 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), Luxembourg, INSPEC Accession No. 15555928, pp. 1-4 (2015). DOI: 10.1109/ETFA.2015.7301618
84. Lik-Hang Lee, and Pan Hui "Interaction Methods for Smart Glasses: A Survey," IEEE Access, Vol. 6, pp. 28712-28732 (2018). DOI: 10.1109/ACCESS.2018.2831081
85. Thurmon E. Lockhart and Wen Shi. “Effects of Age on Dynamic accommodation,” Ergonomics, Vol. 53(7), pp. 892–903 (2010). DOI:10.1080/00140139.2010.489968
指導教授 李正中(Cheng-Chung Lee) 審核日期 2021-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明