博碩士論文 104289603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.144.243.184
姓名 戴維莎(Thavisha Erandinie Dharmawardena)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 利用冷塵埃的熱輻射追蹤主序後星質量 流失歷史
(Tracing Historic Mass Loss from Evolved Stars with Thermal Emission from Cold Dust)
相關論文
★ 宇宙射線在球形震波的加速★ 重力透鏡效應造成的類星體-星系關聯與星系-星系相關函數
★ 星際物質演化的研究★ 宇宙射線在恆星風的自相似解
★ 分子雲演化的二維模型★ 以2MASS近紅外資料研究太陽附近的疏散星團
★ 以二微米巡天觀測近紅外資料研究本銀河系結構★ 橢圓星系中基礎平面及等效半徑的多波段研究
★ 宇宙射線和磁流動力系統之不穩定性★ 初生星團的生存率
★ 橢圓星系外型與紅移關聯之研究★ 在不同均功參數下星團的擴散及核心的形成
★ 兩微米巡天數星所取得的銀河系資訊★ A numerical simulation survey on the outflow from the Galactic center
★ Galaxy Cluster Dynamics and Modified Newtonian Dynamics★ Strong Gravitational Lensing in Modified Newtonian Dynamics
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 主序後星在宇宙塵埃的生命週期中扮演關鍵角色。由於主序後星數量眾多, 因此能有
效率的透過強恆星風和超新星噴發其核心中合成的原料,並以此提供星際介質中的重
元素。在這篇論文中,我研究了主序後星的質量流失,深入研究並探索它們過去一生
中的塵埃質量流失事件。主序後星的典型研究方法是僅考慮當前的質量流失,或假設
它們在其生命週期中經歷近似穩定的質量流失。塵埃從恆星中心離開時會冷卻,可以
利用塵埃的熱輻射有效地追其質量流失歷程。本論文使用Herschel / PACS遠紅外望遠
鏡(波長70微米、100微米和160微米)和JCMT / SCUBA-2次毫米波望遠鏡(450微米
和850微米)來觀測。這兩組觀測結果非常強大,可追主序後星周圍包層的徑向變化。
本論文透過觀察研究表面亮度、溫度、塵埃質量- 柱密度和徑向的塵埃輻射率光譜指
數中的特徵,確定了銀河系主序後星取樣的質量流失變化。將這些結果與恆定流出模
型的預測進行比較,本論文發現此兩種情景決定的總塵埃質量間有顯著偏差。因此進
一步顯示了質量流失變化的影響不容忽視。本論文利用輻射轉移模型確定了唧筒座U星
的分離殼層複雜性,並指出進一步研究的需要。兩個著名主序後星IRC + 10216和鯨魚
座o 星的次毫米波週期的分析顯示,可能可使用主序後星的次毫米波光變曲線來有效研
究它們包層內部的塵埃形成和分解性質。IRC + 10216顯示可見光和次毫米觀測的偏移
相位約為3/4。使用模型預測和過去的報告,顯示恆星脈衝和塵埃形成/分解之間的關
係。這篇論文包含了位於銀河系及麥哲倫雲星系,在中紅外波段觀測到但遠紅外波段
沒有觀測到的主序後星。由Herschel HERITAGE普查計劃,波長為100微米的調查,可
以對這些主序後星中冷塵埃的遠紅外波段成份存在與否進行統計研究。本論文成功提
出由最高質量流失率來源組成的三疊檢測,展示了堆疊法的優點。本論文展示結構的
變化率及質量流失歷程,並強調這些在銀河系及之外的天體,分析研究其塵埃產生的
重要性。
摘要(英) Evolved stars play a key role in the life cycle of dust in the universe. Through strong
winds and supernovae they inject the material reprocessed in their cores to the interstellar
medium, replenishing the interstellar medium with heavy elements. As evolved stars are
so numerous they are extremely e ective in this role. In this thesis we study this mass loss
delving deep into their past, exploring dust mass-loss events which occurred throughout
their lifetime as evolved stars. The typical treatment of evolved stars has been to only
account for present day mass loss or assume they are quasi-stable undergoing constant
mass loss throughout their lifetime. Historic mass loss can be e ectively traced using
thermal emission from the dust which cools down as it moves away from the central star.
We exploit Herschel/PACS far-infrared (70 m; 100 m and 160 m) and JCMT/SCUBA-
2 sub-millimetre (450 m and 850 m) observations to study this historic mass loss.
These two sets of observations are especially powerful, tracing the radial variation in
the circumstellar envelopes of evolved stars. We establish the presence of variations in
mass loss for a sample of Milky Way evolved stars by studying features observed in
surface-brightness, temperature, dust mass-column density and spectral index of dust
emissivity radial pro les. By comparing these results to predictions for a constant-out
ow
model we nd signi cant deviations between the total dust masses determined for the
two scenarios, demonstrating that the e ect of mass-loss variations cannot be ignored.
We determine the complexities of the detached shell of U Ant with the aid of radiative
transfer modelling, prompting the need for further study at higher angular resolution.
The analysis of the sub-mm periodicity of IRC+10216 and o Ceti, two well-known evolved
stars, shows that it may be possible to use sub-mm light curves of evolved stars to study
the nature of dust formation/destruction in their inner envelope e ectively. The optical and sub-mm light curves of IRC+10216 shows an o set in phase of  3=4. Using radiative
transfer modelling as well as ndings in literature we attribute the sub-mm variability and
phase lag to both the relationship between stellar pulse and dust formation/destruction
cycle as well as a second unknown mechanism which needs to be narrowed down in the
future. Moving on from the Milky Way to the Magellanic clouds we combine cutouts of
evolved stars identi ed in the mid-infrared but not detected in the far-IR. The cutouts are
generated from the Herschel HERITAGE survey at 100 m allowing a statistical study of
the existence or absence of a far-IR component as a result of cold dust in these evolved
stars. We successfully produce detections for three stacks comprised of the highest massloss
rate sources, showcasing the merits of the stacking method. With this thesis we
emphasise the variations in structure and hence historic mass loss of evolved stars. By
doing so we highlight the importance of including these variations in studies which include
dust production by evolved stars in the future.
關鍵字(中) ★ 進化的恆星
★ 散熱粉塵
★ 質量損失率
★ 亞毫米波
關鍵字(英) ★ Evolved stars
★ Thermal dust emission
★ Mass loss
★ sub-mm
論文目次 電子論文授權書Authorisation of the Electronic Thesis i
指導教授推薦書Recommendation Letter from the Thesis Advisor iii
試委員審定書Verification from the Oral Examination Committee v
英文摘要Abstract in English vii
中文摘要Abstract in Chinese ix
誌謝Acknowledgements xi
出版物清單List of Publications xiii
List of Figures xix
List of Tables xxi
1 Introduction 1
2 Extended Dust Emission from Nearby Evolved Stars 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Observations and Data Reduction . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Source selection and SCUBA-2 observations . . . . . . . . . . . . . 15
2.2.2 SCUBA-2 data reduction . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 IRC+10216 (CW Leo) and o Cet (Mira) SCUBA-2 data reduction . 18
2.2.4 Herschel PACS data . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Extended Dust Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Surface-brightness pro_les . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Spectral Energy Distribution _ts . . . . . . . . . . . . . . . . . . . 23
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Extent and ux levels of the thermal dust emission . . . . . . . . . 25
2.4.2 Radial variation in dust properties . . . . . . . . . . . . . . . . . . 30
2.4.2.1 Radial Variation in _ . . . . . . . . . . . . . . . . . . . . . 30
2.4.2.2 Temperature Radial Variation . . . . . . . . . . . . . . . . 32
2.4.2.3 Radial variation in the dust column density . . . . . . . . 33
2.4.3 Notes on selected sources . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.3.1 NML Cyg . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.3.2 IRC+10216 . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3.3 U Hya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.4 Dust mass-loss Rates and Dust-to-Gas Ratios . . . . . . . . . . . . 40
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 The Nearby Evolved Stars Survey: I. JCMT/SCUBA-2 Sub-millimetre
detection of the detached shell of U Antliae 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Observations and Data Reduction . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Removing CO(3-2) Contamination . . . . . . . . . . . . . . . . . . 55
3.2.2 Archival Herschel observations . . . . . . . . . . . . . . . . . . . . . 55
3.3 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Surface-brightness Pro_les . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Shell Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.2.1 Radial point-to-point Spectral Energy Distribution Fitting 60
3.3.2.2 Full Radiative Transfer Modelling . . . . . . . . . . . . . . 61
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.1 Surface-brightness emission . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Radial variation in dust properties . . . . . . . . . . . . . . . . . . 68
3.4.3 Self-consistent dust radiative transfer modelling . . . . . . . . . . . 70
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4 Sub-mm Variability of IRC+10216 and o Ceti 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Observations and Data Reduction . . . . . . . . . . . . . . . . . . . 80
4.2.2 PSF Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.1 Light Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Sub-mm Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.1 Periodograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.2 Periods and Phase folded Light Curves . . . . . . . . . . . . . . . . 88
4.5 Origins the Sub-mm Variability and Phase-lag . . . . . . . . . . . . . . . . 90
4.5.1 Light Travel Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.2 Molecular Line Contamination . . . . . . . . . . . . . . . . . . . . . 90
4.5.3 Cycle of Dust Formation and Destruction . . . . . . . . . . . . . . . 92
4.5.3.1 Radiative Transfer Modelling of IRC+10216 . . . . . . . . 92
4.5.4 Free-free emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5 Stacking analysis of the Herschel/HERITAGE data to statistically study
far-IR dust emission from evolved stars in the Large Magellanic Cloud 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Observations and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.1 Removal of Contaminants and Selection of Stacking Categories . . . 102
5.2.2 Generating Cutouts and Stacking . . . . . . . . . . . . . . . . . . . 103
5.2.3 PSF Photometry and GRAMS predicted fluxes . . . . . . . . . . . 104
5.3 Preliminary Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1 Photometric Results and Comparison to Model Predictions . . . . . 106
5.3.2 8 vs. 8 ? 24 Colour Magnitude Diagram . . . . . . . . . . . . . . . 110
5.4 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6 Conclusion 115
A Fitting radial SEDs with MCMC 131
B Supplementary Figures for Chapter 2 135
C Published Shell Radii and Schematic Diagram of U Ant 149
D CO 3-2 subtraction 151
E Observed global SED fluxes of U Ant 153
F SCUBA observations from 1997 155
G Supplementary Figures for Chapter 4 157
參考文獻 Arimatsu K., Izumiura H., Ueta T., Yamamura I., Onaka T., 2011, ApJ, 729, L19
Aringer B., Girardi L., Nowotny W., Marigo P., Lederer M. T., 2009, A&A, 503, 913
Balog Z., et al., 2014, Experimental Astronomy, 37, 129
Beichman C. A., Neugebauer G., Habing H. J., Clegg P. E., Chester T. J., eds, 1988,
Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory
supplement Vol. 1
Bianchi S., Schneider R., 2007, MNRAS, 378, 973
Bladh S., 2019, arXiv e-prints,
Bocchio M., Bianchi S., Abergel A., 2016, A&A, 591, A117
Bowen G. H., Willson L. A., 1991, ApJ, 375, L53
Boyer M. L., et al., 2012, ApJ, 748, 40
Boyer M. L., et al., 2017, ApJ, 851, 152
Bradley L., et al., 2016, astropy/photutils: v0.3, doi:10.5281/zenodo.164986, https://
doi.org/10.5281/zenodo.164986
Cernicharo J., et al., 2014, ApJ, 796, L21
Cernicharo J., Marcelino N., Agundez M., Guelin M., 2015, A&A, 575, A91
Chapin E. L., Berry D. S., Gibb A. G., Jenness T., Scott D., Tilanus R. P. J., Economou
F., Holland W. S., 2013, MNRAS, 430, 2545
Cox N. L. J., et al., 2012, A&A, 537, A35
Currie M. J., Berry D. S., Jenness T., Gibb A. G., Bell G. S., Draper P. W., 2014, in
Manset N., Forshay P., eds, Astronomical Society of the Paci c Conference Series Vol.
485, Astronomical Data Analysis Software and Systems XXIII. p. 391
Cutri R. M., et al. 2012, VizieR Online Data Catalog, p. II/311
Danilovich T., et al., 2015, A&A, 581, A60
De Beck E., Decin L., de Koter A., Justtanont K., Verhoelst T., Kemper F., Menten
K. M., 2010, A&A, 523, A18
De Beck E., et al., 2012, A&A, 539, A108
Decin L., Hony S., De Koter A., Molenberghs G., Dehaes S., Markwick-Kemper F., 2007,
A&A, 475, 233
Decin L., et al., 2011, A&A, 534, A1
Decin L., et al., 2019, Nature Astronomy, 3, 408
Dehaes S., Groenewegen M. A. T., Decin L., Hony S., Raskin G., Blommaert J. A. D. L.,
2007, MNRAS, 377, 931
Dempsey J. T., et al., 2013, MNRAS, 430, 2534
Dharmawardena T. E., et al., 2018, Monthly Notices of the Royal Astronomical Society,
479, 536
Di Criscienzo M., et al., 2016, MNRAS, 462, 395
Doi Y., et al., 2009, in Heras A. M., Swinyard B. M., Isaak K. G., Goicoechea J. R., eds,
The Next-Generation Infrared Space Mission: SPICA. p. 04018 (arXiv:0911.5196),
doi:10.1051/spica/200904018
Doi Y., et al., 2015, PASJ, 67, 50
Doty S. D., Leung C. M., 1994, ApJ, 424, 729
Drabek E., et al., 2012, MNRAS, 426, 23
Draine B. T., 2016, ApJ, 831, 109
Drake A. J., et al., 2014, ApJS, 213, 9
Dyck H. M., Benson J. A., Howell R. R., Joyce R. R., Leinert C., 1991, AJ, 102, 200
Ekstrom S., et al., 2012, A&A, 537, A146
Elvis M., Marengo M., Karovska M., 2002, ApJ, 567, L107
Eriksson K., Nowotny W., Hofner S., Aringer B., Wachter A., 2014, A&A, 566, A95
Ertel S., et al., 2014, A&A, 561, A114
Fixsen D. J., 2009, ApJ, 707, 916
Fonfra J. P., et al., 2018, ApJ, 860, 162
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125, 306
Fraser M., et al., 2014, MNRAS, 439, L56
Fulvio D., Gobi S., Jager C., Kereszturi A., Henning T., 2017, ApJS, 233, 14
Gaia Collaboration et al., 2018, A&A, 616, A1
Gall C., Hjorth J., Andersen A. C., 2011, A&A Rev., 19, 43
Goldman S. R., et al., 2017, MNRAS, 465, 403
Gonzaga S., et al. 2012, The DrizzlePac Handbook
Gonzalez Delgado D., Olofsson H., Schwarz H. E., Eriksson K., Gustafsson B., 2001, A&A,
372, 885
Gonzalez Delgado D., Olofsson H., Schwarz H. E., Eriksson K., Gustafsson B., Gledhill
T., 2003, A&A, 399, 1021
Gordon K. D., et al., 2014, ApJ, 797, 85
Grin M. J., et al., 2010, A&A, 518, L3
Groenewegen M. A. T., et al., 2011, A&A, 526, A162
Groenewegen M. A. T., et al., 2012, A&A, 543, L8
Gruendl R. A., Chu Y.-H., Seale J. P., Matsuura M., Speck A. K., Sloan G. C., Looney
L. W., 2008, ApJ, 688, L9
Guandalini R., Busso M., 2008, A&A, 488, 675
Habing H. J., Olofsson H., eds, 2003, Asymptotic giant branch stars
He S., Yuan W., Huang J. Z., Long J., Macri L. M., 2016, AJ, 152, 164
He J. H., Dinh-V-Trung Hasegawa T. I., 2017, ApJ, 845, 38
Hengst S., Marshall J. P., Horner J., Marsden S. C., 2017, MNRAS, 468, 4725
Hildebrand R. H., 1983, QJRAS, 24, 267
Hofner S., 2008, A&A, 491, L1
Hofner S., Olofsson H., 2018, A&A Rev., 26, 1
Hogg D. W., Bovy J., Lang D., 2010, preprint, (arXiv:1008.4686)
Holland W. S., et al., 2013, MNRAS, 430, 2513
Huijse P., Estevez P. A., Forster F., Daniel S. F., Connolly A. J., Protopapas P., Carrasco
R., Principe J. C., 2018, ApJS, 236, 12
Ishihara D., et al., 2010, A&A, 514, A1
Izumiura H., Hashimoto O., Kawara K., Yamamura I., Waters L. B. F. M., 1996, A&A,
315, L221
Izumiura H., Waters L. B. F. M., de Jong T., Loup C., Bontekoe T. R., Kester D. J. M.,
1997, A&A, 323, 449
Izumiura H., et al., 2009, in Onaka T., White G. J., Nakagawa T., Yamamura I., eds,
Astronomical Society of the Paci c Conference Series Vol. 418, AKARI, a Light to
Illuminate the Misty Universe. p. 127
Izumiura H., et al., 2011, A&A, 528, A29
Javadi A., van Loon J. T., Khosroshahi H., Mirtorabi M. T., 2013, MNRAS, 432, 2824
Jenness T., Economou F., 2015, Astronomy and Computing, 9, 40
Jenness T., Stevens J. A., Archibald E. N., Economou F., Jessop N. E., Robson E. I.,
2002, MNRAS, 336, 14
Jones A. P., 2001, Philosophical Trans. R. Soc. Lond. A, 359, 1961
Jones A. P., Fanciullo L., Kohler M., Verstraete L., Guillet V., Bocchio M., Ysard N.,
2013, A&A, 558, A62
Jones O. C., McDonald I., Rich R. M., Kemper F., Boyer M. L., Zijlstra A. A., Bendo
G. J., 2015a, MNRAS, 446, 1584
Jones O. C., Meixner M., Sargent B. A., Boyer M. L., Sewi lo M., Hony S., Roman-Duval
J., 2015b, ApJ, 811, 145
Jura M., Kleinmann S. G., 1989, ApJ, 341, 359
Karakas A. I., 2014, in Feltzing S., Zhao G., Walton N. A., Whitelock P., eds,
IAU Symposium Vol. 298, Setting the scene for Gaia and LAMOST. pp 142{153,
doi:10.1017/S1743921313006315
Kelly B. C., Shetty R., Stutz A. M., Kau mann J., Goodman A. A., Launhardt R., 2012,
ApJ, 752, 55
Kennedy G. M., Wyatt M. C., Sibthorpe B., Phillips N. M., Matthews B. C., Greaves
J. S., 2012, MNRAS, 426, 2115
Kerschbaum F., et al., 2010, Astronomy and Astrophysics
Kerschbaum F., et al., 2017, A&A, 605, A116
Kim S.-H., Martin P. G., Hendry P. D., 1994, ApJ, 422, 164
Kim H., Lee H.-G., Mauron N., Chu Y.-H., 2015, ApJ, 804, L10
Knapp G. R., Morris M., 1985, ApJ, 292, 640
Ladjal D., Justtanont K., Groenewegen M. A. T., Blommaert J. A. D. L., Waelkens C.,
Barlow M. J., 2010, A&A, 513, A53
Lattanzio J., Frost C., Cannon R., Wood P. R., 1996, Mem. Soc. Astron. Italiana, 67, 729
Le Bertre T., 1992, A&AS, 94, 377
Liseau R., et al., 2010, A&A, 518, L132
Lomb N. R., 1976, Ap&SS, 39, 447
Maercker M., Olofsson H., Eriksson K., Gustafsson B., Schoier F. L., 2010, A&A, 511,
A37
Maercker M., et al., 2012, Nature, 490, 232
Maercker M., Silva T. K., Beck E. D., Brunner M., Mecina M., Jaldehag O., 2018, A&A
Mairs S., et al., 2017, ApJ, 843, 55
Marengo M., Ivezic Z., Knapp G. R., 2001, MNRAS, 324, 1117
Marigo P., et al., 2017, ApJ, 835, 77
Marshall J. P., et al., 2011, A&A, 529, A117
Marshall J. P., et al., 2014, A&A, 570, A114
Marshall J. P., Booth M., Holland W., Matthews B. C., Greaves J. S., Zuckerman B.,
2016, MNRAS, 459, 2893
Matsuura M., et al., 2009, MNRAS, 396, 918
Mattsson L., Hofner S., Herwig F., 2007, A&A, 470, 339
Mauron N., Huggins P. J., Cheung C.-L., 2013, A&A, 551, A110
Mayer A., et al., 2013, A&A, 549, A69
McDonald I., Trabucchi M., 2019, MNRAS, 484, 4678
McDonald I., Zijlstra A. A., Watson R. A., 2017, MNRAS, 471, 770
Meixner M., et al., 2006, AJ, 132, 2268
Meixner M., et al., 2013, AJ, 146, 62
Mennella V., Brucato J. R., Colangeli L., Palumbo P., Rotundi A., Bussoletti E., 1998,
ApJ, 496, 1058
Menten K. M., Reid M. J., Krugel E., Claussen M. J., Sahai R., 2006, A&A, 453, 301
Menten K. M., Reid M. J., Kaminski T., Claussen M. J., 2012, A&A, 543, A73
Meynet G., et al., 2015, A&A, 575, A60
Miettinen O., et al., 2015, A&A, 584, A32
Morgan H. L., Edmunds M. G., 2003, MNRAS, 343, 427
Murdin P., Murdin L., 1985, Supernovae
Neugebauer G., et al., 1984, ApJ, 278, L1
Olofsson H., Eriksson K., Gustafsson B., 1988, A&A, 196, L1
Olofsson H., Carlstrom U., Eriksson K., Gustafsson B., Willson L. A., 1990, A&A, 230,
L13
Olofsson H., Bergman P., Eriksson K., Gustafsson B., 1996, A&A, 311, 587
Olofsson H., Maercker M., Eriksson K., Gustafsson B., Schoier F., 2010, A&A, 515, A27
Ossenkopf V., Henning T., Mathis J. S., 1992, A&A, 261, 567
Pardo J. R., et al., 2018, A&A, 615, L4
Parsons H., et al., 2018, ApJS, 234, 22
Pegourie B., 1988, A&A, 194, 335
Planck Collaboration et al., 2014, A&A, 571, A11
Poglitsch A., et al., 2010, A&A, 518, L2
Pols O. R., Tout C. A., Lattanzio J. C., Karakas A. I., 2001, in Podsiadlowski P., Rappaport
S., King A. R., D′Antona F., Burderi L., eds, Astronomical Society of the Paci c
Conference Series Vol. 229, Evolution of Binary and Multiple Star Systems. p. 31
Pope A., et al., 2008, ApJ, 689, 127
Principe J. C., 2010, Information Theoretic Learning: Renyi′s Entropy and Kernel Perspectives,
1st edn. Springer Publishing Company, Incorporated
Ramstedt S., Maercker M., Olofsson G., Olofsson H., Schoier F. L., 2011, A&A, 531, A148
Ramstedt S., et al., 2017, A&A, 605, A126
Reimann J. D., 1994, PhD thesis, UNIVERSITY OF CALIFORNIA, BERKELEY.
Reynolds T. M., Fraser M., Gilmore G., 2015, MNRAS, 453, 2885
Riebel D., Srinivasan S., Sargent B., Meixner M., 2012, ApJ, 753, 71
Robitaille T. P., 2011, A&A, 536, A79
Rodighiero G., et al., 2010, A&A, 518, L25
Rodrigo C., Solano E., Bayo A., 2012, SVO Filter Pro le Service Version 1.0, IVOA
Working Draft 15 October 2012
Rowlands K., Gomez H. L., Dunne L., Aragon-Salamanca A., Dye S., Maddox S., da
Cunha E., van der Werf P., 2014, MNRAS, 441, 1040
Sadavoy S. I., et al., 2013, ApJ, 767, 126
Sargent B. A., Srinivasan S., Meixner M., 2011, ApJ, 728, 93
Scargle J. D., 1982, ApJ, 263, 835
Schneider R., Valiante R., Ventura P., dell′Agli F., Di Criscienzo M., Hirashita H., Kemper
F., 2014, MNRAS, 442, 1440
Schoier F. L., Lindqvist M., Olofsson H., 2005, A&A, 436, 633
Schreiber C., et al., 2015, A&A, 575, A74
Schuster M. T., Humphreys R. M., Marengo M., 2006, AJ, 131, 603
Seale J. P., et al., 2014, AJ, 148, 124
Shenavrin V. I., Taranova O. G., Nadzhip A. E., 2011, Astronomy Reports, 55, 31
Shetty R., Kau mann J., Schnee S., Goodman A. A., Ercolano B., 2009, ApJ, 696, 2234
Silverman B. W., 1986, Density estimation for statistics and data analysis
Simis Y. J. W., Icke V., Dominik C., 2001, A&A, 371, 205
Skrutskie M. F., et al., 2006, AJ, 131, 1163
Smith B. J., Price S. D., Baker R. I., 2004, ApJS, 154, 673
Smith M. W. L., et al., 2012, ApJ, 756, 40
Srinivasan S., Sargent B. A., Meixner M., 2011, A&A, 532, A54
Srinivasan S., Boyer M. L., Kemper F., Meixner M., Sargent B. A., Riebel D., 2016,
MNRAS, 457, 2814
Ste en M., Schonberner D., 2000, A&A, 357, 180
Templeton M. R., Karovska M., 2009, ApJ, 691, 1470
Testi L., et al., 2014, Protostars and Planets VI, pp 339{361
Teyssier D., et al., 2015, in Kerschbaum F., Wing R. F., Hron J., eds, Astronomical
Society of the Paci c Conference Series Vol. 497, Why Galaxies Care about AGB Stars
III: A Closer Look in Space and Time. p. 43
VanderPlas J. T., 2018, ApJS, 236, 16
VanderPlas J. T., Ivezic Z., 2015, ApJ, 812, 18
Vanderplas J., 2015, gatspy: General tools for Astronomical Time Series in Python,
doi:10.5281/zenodo.14833, https://doi.org/10.5281/zenodo.14833
Vassiliadis E., Wood P. R., 1994, ApJS, 92, 125
Villaver E., Garca-Segura G., Manchado A., 2002, ApJ, 571, 880
Wareing C. J., Zijlstra A. A., O′Brien T. J., 2007, MNRAS, 382, 1233
Waters L. B. F. M., Loup C., Kester D. J. M., Bontekoe T. R., de Jong T., 1994, A&A,
281, L1
Willems F. J., de Jong T., 1988, A&A, 196, 173
Witteborn F. C., Strecker D. W., Erickson E. F., Smith S. M., Goebel J. H., Taylor B. J.,
1980, ApJ, 238, 577
Wong K. T., Kaminski T., Menten K. M., Wyrowski F., 2016, A&A, 590, A127
Zhang B., Reid M. J., Menten K. M., Zheng X. W., Brunthaler A., 2012, A&A, 544, A42
Zijlstra A. A., Chapman J. M., te Lintel Hekkert P., Likkel L., Comeron F., Norris R. P.,
Molster F. J., Cohen R. J., 2001, MNRAS, 322, 280
Zubko V. G., Mennella V., Colangeli L., Bussoletti E., 1996, MNRAS, 282, 1321
van Leeuwen F., 2007, A&A, 474, 653
van Loon J. T., Boyer M. L., McDonald I., 2008, ApJ, 680, L49
指導教授 高仲明(Prof. Chung-Ming Ko) 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明