博碩士論文 104322033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.145.15.205
姓名 簡煒峰(Wei-Feng Chien)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用時域反射法於地層下陷監測之改善研發
(Improvement of subsidence monitoring using Time Domain Reflectometry)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 時域反射法於土壤含水量與導電度遲滯效應之影響因子探討★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ TDR監測資訊平台之改善與 感測器觀測服務之建立
★ 微生物膠結作用對砂質土壤性質的影響★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策
★ 土壤液化引致側向滑移對樁基礎之影響及其對策★ 挖掘機鏟斗上土壤黏附問題的基礎研究
★ 用過核子燃料最終處置場緩衝材料之 熱-水耦合實驗及模擬★ 堰塞壩破壞歷程分析及時域反射法應用監測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
地層下陷的問題在台灣日益嚴重,而根本瞭解沉陷的機制才能擬定減緩沉陷行為的方法。由於台灣西部的沖積扇平原含有多個含水層與阻水層,要瞭解沉陷行為必須監測各個壓縮層的沉陷情形。現有的磁環式監測井可以達到分層監測,但是此方法的人為誤差降低了沉陷精確度,而且無法即時反應沉陷行為。為此,本研究參考既有時域反射方法(Time Domain Reflectometry, TDR) 於沉陷量測之初步建議,以監測各個壓縮層的沉陷行為,不僅可以達到分層監測的目的,自動化監測去除了人為誤差的影響。本研究延續陳震紘(2014)之初步研究成果,採用漸變型金屬沉陷計以及發泡性聚苯乙烯(Expandable Polystyrene, EPS) 之非金屬沉陷計合併而成新式沉陷計,並提出多種判斷沉陷計位置的方法。此外,面對長距離傳輸造成的TDR 波形衰減問題,本研究建造一大型物理模型進行水中試驗,模擬地下水位變化時,波形衰減以及波形偏移之行為。當水位上升4 m,波形向下與向上振幅分別衰減了55%與80%,而最小與最大偏移量分別為4.53cm/m、8.64 cm/m。但於侷限含水層之實際沉陷計位移評估下,試驗結果顯示不受水深變化影響,其量測精度為0.97 mm,量測準確度為
0.90 mm,因此本研究初步建議本研發之沉陷計仍以侷限含水層為優先,但目前初步評析可適用範圍為30 m。本研究為改善波形衰減問題,提出一沉陷計分段式串接概念,藉由改變電磁波傳遞路徑以減少衰減行為,分析結果發現波形仍有產生衰減,但量測範圍大幅提昇至43 m。
綜合上述試驗結果,本研究認為TDR 沉陷監測方法可應用於淺層之沉陷自動化監測,若是沉陷井建置於自由含水層,則可透過本研究中的波形偏移與水位關係,扣除偏移後求得實際沉陷量。
關鍵詞:地層下陷、時域反射法、自動化
摘要(英) Abstract
Since the problem of subsidence becomes serious recently in Taiwan, understanding the trend and mechanism of subsidence for reducing the influence is much essential and needed. The region in western Taiwan, however, consists of several aquifers and aquitards, it requires kinds of multilevel measurement methods for subsidence profiling. The public method now is the multi-depth subsidence leveling with magnetic rings, but it has apparent measurement error and lacks temporal resolution due to the manual manipulation. To provide an automatic and high accuracy instrumentation, this study improved Time Domain Reflectometry (TDR) as the core technology to measure subsidence based on the designs of Chen(2014). New subsidence sensor and related data reduction method have been validated to decrease the measurement error in the laboratory. To quantify the TDR wave attenuation and measurement error, which may be affected by groundwater variation, a 6 m physical model is built for such scenario. While water level rises 4 m, minimum and maximum amplitudes of TDR subsidence sensor wave decrease 55% and 80%, and the related error are 4.53 cm/m and 8.64 cm/m. The measurement precision and accuracy are 0.97 mm and 0.90 mm, respectively.
Nevertheless, the signal decay due to the long transmission line is inevitable. A novel multi-section connection schema is now proposed and under testing to solve the aforementioned problem, it increases the measuring range from 30 m to 43 m.
Keywords: Subsidence, Time Domain Reflectometry (TDR), automatic monitoring.
關鍵字(中) ★ 地層下陷
★ 時域反射法
★ 自動化
關鍵字(英) ★ Subsidence
★ Time Domain Reflectometry (TDR)
★ Automatic monitoring
論文目次 目錄
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 XII
一、前言 1
1.1 研究動機 1
1.2 研究目的 4
二、文獻回顧 5
2.1 地層下陷監測方法簡介 5
2.1.1 地表總沉陷監測方法 5
2.1.2 地下沉陷監測方法 8
2.2 沉陷監測案例簡介 20
2.2.1 台灣濁水溪沖積扇地區沉陷監測成果 20
2.2.2 中國地層下陷情形與監測成效 23
2.2.3 西班牙Murcia城市地層下陷監測應用 24
2.3 時域反射方法原理及應用 26
2.3.1 TDR基本原理 26
2.3.2 TDR於大地工程監測之應用 30
2.4 TDR地層下陷監測初步研發成果 32
2.5 小結 39
三、研究方法 40
3.1 既有TDR沉陷量測系統設計改良 41
3.1.1 TDR沉陷量測機制 41
3.1.2 波形雜訊過濾方法 44
3.1.3 TDR沉陷計改良方法 45
3.1.4 沉陷計定位方法 50
3.1.5 水位計合併研擬 56
3.2 TDR 沉陷計量測效能評估 58
3.2.1 沉陷系統環境穩定性評估 58
3.2.2 訊號衰減評估與量測重複性試驗 62
3.2.3 波形偏移程度與沉陷精度量測 63
3.3 新式TDR沉陷系統改善規劃 67
四、試驗結果與討論 69
4.1 TDR沉陷計改善成果 69
4.1.1 金屬沉陷計改善 69
4.1.2 非金屬沉陷計 71
4.1.3 新式沉陷計 73
4.2 TDR沉陷計量測效能成果 74
4.2.1 沉陷系統穩定性影響評估成果 74
4.2.2 TDR波形衰減試驗與量測重複性成果 77
4.2.3 TDR波形偏移與沉陷精度量測成果 78
4.3 沉陷系統改善成果 89
五、結論與建議 94
5.1 結論 94
5.2 建議 96
參考文獻 98
參考文獻 參考文獻
1. 洪偉嘉,2009,「應用多重感應器監測雲林地區三維變形」,博士論文,國立交通大學土木工程系。
2. 洪偉嘉,2011,「台灣地區地層下陷之監測方法」,經濟部水利署。
3. 財團法人工業技術研究院,2010,「99 年度地層下陷分層監測井建置及其試驗分析」,經濟部水利署。
4. 莊子賢,2013,「地層下陷分佈式水壓與沉陷監測系統之研發」,碩士論文,國立交通大學土木工程系。
5. 經濟部水利署國立成功大學地層下陷防治服務團,
6. 陳震紘,2014,「時域反射方法於地層下陷監測技術研發及可行性評估」,碩士論文,國立交通大學土木工程系。
7. 鄭志峯,2013,「多點分佈式TDR 含水量感測器改良」,碩士論文,國立交通大學土木工程系。
8. 鐘志忠、林志平,2015,「高精度地層下陷監測技術研發與應用」,科技部計畫。
9. 鐘志忠、黃智遠、曾國欣,2016,「淺層崩塌降雨警戒基準與檢監測技術評估研究」,科技部計畫。
10. Andrews, J.R. (1994). “Time domain reflectometry, proceedings of the symposium on time domain reflectometry in environmental, infrastructure, and mining applications.” U.S. Bureau of Mines, 99 Evanston, Illinois, Special Publication 19-94, pp. 4-13.
11. Brambilla Davide, Longoni Laura and Papini Monica (2015). “Field and laboratory testing of time domain reflectometry cables for landslide monitoring.” 15th International Multidisciplinary Scientific GeoConference, pp. 329-336.
12. Burland, J. B., Moore, J. F. A. and Smith, P. D. K.
(1972), “A simple and precise borehole extensometer.” Gebechnique, Vol. 22, No. 1, pp.174-177.
13. Cataldo A., Persico R., Leucci G., Benedetto E. De, Cannazza G., Matera L., Giorgi L. De. (2014). “Time domain reflectometry, ground penetrating radar and electrical resistivity tomography: a comparative analysis of alternative approaches for leak detection in underground pipes.” NDT&E International, Vol. 62, pp. 14-28.
14. Chung, C.C. and Lin, C.P. (2011). “High Concentration Suspended Sediment Measurements using Time Domain Reflectometry.” Journal of Hydrology, Vol. 401, pp. 134-144.
15. C.R.Kennedy company,

16. Drusa Marián, Bulko Roman (2016). “Rock slide monitoring by using TDR inclinometers.” De Gruyter Open, Vol.12, pp. 137-144.
17. Dworak, R.A., Jordan, A.G., and Thorne, J.S. (1977). “Time Domain Reflectometer Microcomputer.” BuMines OFR. Vol. 106, No. 77, pp.113.
18. Geosense company,
19. Halliday, D. and Resnick, R. (1962). Physics, Part II, John Wiley and Sons, New York.
20. HMA company.
21. Hung, W.C., Wang, C, Hwang, C., Chen, Y.A., Chiu, H.C., Lin, S.H. (2015). “Multiple sensors applied to monitor land subsidence in central Taiwan.” PIAHS, Vol. 372, pp. 385-391.
22. Lin, C.P. and Tang, S.H. (2005). “Development and calibration of a TDR extensometer for geotechnical monitoring.” Geotechnical Testing Journal, Vol. 28, No. 5, Paper ID: GTJ12188.
23. Lin, C.P., Tang, S.H., Chung, C.C. and Lin, W.C. (2006). “Quantification of localized shear deformation with time domain reflectometry.” Proceedings of the 3rd International Symposium and Workshop on Time Domain Reflectometry for Innovative Soils Applications, Purdue University.
24. Lin, C.P., Chung, C.C., and Tang, S.H. (2007). “Accurate TDR measurement of electrical conductivity accounting for cable resistance and recording time.” Soil Sci. Soc. Am. J., Vol. 71, pp. 1278-1287.
25. Lin, C.-P., Chung, C.-C., Huisman, J. A., and Tang, S.-H. (2008). “Clarification and Calibration of Reflection Coefficient for Electrical Conductivity Measurement by Time Domain Reflectometry.” Soil Sci. Soc. Am. J., Vol. 72, pp. 1033-1040.
26. Lin, C.P., Tang, S.H., Lin, W.C., and Chung, C.C.
(2009). “Quantification of cable deformation with TDR: implications to landslide monitoring.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 1, pp. 143-152.
27. Liu, C.H., Pan, Y.W., Liao, J.J., Hung, W.C. (2004). “Estimating coefficients of volume compressibility from compression of strata and piezometric changes in a multiaquifer system in west Taiwan.” 101 Engineering Geology, Vol. 75, pp. 33–47.
28. Marsland, A. and Quarterman, R. (1974). “Further development of multipoint magnetic extensometers for use in highly compressible.” Géotechnique, Vol. 24, pp. 429-433.
29. Massonnet, D. and Feigl, K. L. (1998). “Radar interferometry and its application to changes in the Earth′s surface.” Reviews of Geophysics, No. 36, pp. 441-500.
30. Slope indicator company,

31. Smail M. K., Pichon L., Olivas M., Auzanneau F., and Lambert M. (2010). “Detection of defects in wiring networks using time domain reflectometry.” IEEE transactions on magnetics, Vol. 46, No. 8, pp. 2998-3001.
32. SolExperts (2009),

33. Tessitore S., Fernández-Merodo J. A., Herrera G., Tomás R., Ramondini M., Sanabria M., Duro J., Mulas J., and Calcaterra D. (2016). “Comparison of water-level, extensometric, DInSAR and simulation data for quantification of subsidence in Murcia City (SE Spain).” Hydrogeology Journal, No. 24, pp. 727-747.
34. Ye Shujun, Xue Yuqun, Wu Jichun, Yan Xuexin, and Yu Jun (2016). “Progression and mitigation of land subsidence in China.” Hydrogeology Journal, No. 24, pp. 685-693.
35. Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., and Werner, C. L. (1994). “On the derivation of coseismic displacement fields using differential radar interferometry: the landers earthquake.” Journal of
Geophysical Research, Vol.99, No. 19, pp. 617-634.
指導教授 鐘志忠、洪汶宜(Chih-Chung Chung Wen-Yi Hung) 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明