博碩士論文 104322050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:54.158.194.80
姓名 林柏吾(Bor-Wu-Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 深地層最終處置場緩衝材料小型熱-水耦合實驗之分層含水量量測改善
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2019-8-1以後開放)
摘要(中) 核能發電為各國主要電力來源之一,但由於核能發電所產生之用過核子燃料具有高度放射性,且燃料棒內部核種其半衰期長達千百年乃至數十萬年,其衰變過程中所伴隨之衰變熱(Heat decay),會形成一定範圍的溫度場效應。國際間目前對於用過核子燃料之最終處置方式一致採用「深層地質處置」(Deep Geologic Disposal)概念,並以工程障壁系統(Engineered Barrier System ,EBS)阻滯放射性核種之遷移,使其達成與人類生活圈完全隔離之設計目標,最終處置場之主要功能為利用緩衝材料所具備之功能性質包括高回脹潛能、低水力傳導特性、適當的熱傳導性以及遲滯核種遷移能力,以阻滯及延緩高放射性核種之遷移,而放射性廢棄物深地層處置場近場與遠場的演化程序主要受到四大因素所影響,包含T熱學(Thermal)、H水力(Hydraulic)、M力學(Mechanical)、C化學(Chemical)等因素,常為兩項或兩項以上交互作用,簡稱為T-H-M-C耦合效應,進而影響最終處置場之預期功能。
本研究針對T-H耦合效應將實驗分為兩部份,首先實驗上使用TDR時域反射法含水量即時監測系統進行SPV200膨潤土之電學性質量測,以及進行TDR感測器之改良,再針對深地層處置場內緩衝材料周圍地下水回注近場環境後之再飽和狀態,提出以實驗室小型實驗與模擬分析。SPV200膨潤土之電學性質量測實驗發現在高含水量且溫度增加下,TDR波型受高導電度影響出現波型衰減情形,因此本研究使用保鮮膜與熱縮管兩種絕緣材料進行鎢鋼棒感測器表層絕緣處理,測試後發現保鮮膜絕緣鎢鋼棒擁有良好的絕緣能力。而在分層含水量監測實驗中觀察到25 ℃系統與40 ℃系統之膨潤土浸水後,底部試體體積含水量有高於飽和膨潤土體積含水量理論界限值47%之情況,原因為膨潤土具有高回脹能力,吸水後體積產生膨脹,於體積固定之模具內,下層之高飽和度之膨潤土吸水膨脹後向上擠壓上層低飽和度膨潤土,導致膨潤土產生擠壓變形,使孔隙體積與土壤顆粒體積發生改變。膨潤土試體之位移量與飽和度歷時分析結果其趨勢與ABAQUS有限元素分析模擬趨勢相符,乾密度與相對位移成正比關係,與飽和度及孔隙比成反比關係,顯示本研究建置之TDR分層含水量監測量測系統能夠有效進行膨潤土試體與TH耦合下之體積含水量歷時監測。
摘要(英)
Nuclear power which is used as each countrasies one of the main sources of electricity, but the Nuclear power plant produces highly radioactive sSpent nNuclear fFuel eventually., tThe fuel rods haveinside nuclear half-life of thousands or even hundreds of thousands of years, and . Tthe decay of the heat generated by spent nuclear fuel in decay process, will form aaffect the environment in a certain range of temperature field effect. Thus, most countries use the concept of Internationally, the use of nuclear fuel for the final disposal of the nuclear fuel infinal use of ”deep geological disposal” , and the migration of radioactive nuclei was blocked bywith Engineered Barrier System (EBS) to reach the completely isolatedtion from with the human life circle design goals. TheOne of the main functionobjective of EBS the final disposal site is the use ofapplying the buffer material with the functional properties including high expansion potential, low hydraulic conductivity characteristics, appropriate thermal conductivity, and hysteresisdecreasing nuclear migration ability to block and delay the migration of highly radioactive nuclear species, and t. The evolution of near-field and far-field in deep-site treatment of radioactive wasteEBS, however, isare mainlystill affected by four factors, including Thermal, Hydraulic, Mechanical, and Chemical and other factors, influences. Tthese factors are often two or more interactionsed, referred to as T-H-M-C coupling effect, and thus affecting the fexpected functionality of the final disposal of the expected function.
In this study, the experiment was divided into two parts for the T-H coupling effect. First, we use the TDR time domain reflection (TDR) method tois employed to monitor the electrical properties of SPV200 bentonite, as well as the improvement of the TDR sensor. This research haveThen a small scale laboratory experiment and a the related simulation analysis of the re-saturation of bentonite state under T-H coupling of were conductedthe groundwater around the near-field environment. The second part is to study the relationship between the decay heat generated by the waste tank and the water-thermal coupling(T-H coupling) state formed by the groundwater entering the near-field environment. Three TDR sensors with a resolution of 1 cm were embedded in the bentonite samples. The samples were immersed in 25 ℃, 40 ℃, 60 ℃ three kinds of constant temperature water tank system for 120 hours to remove and observe the test Body flooding condition.
SPV200 bentonite electrical properties of the testwas found to have high electrical conductivitythat in as high water content bentonite, TDR wave with theand temperature increase. increase began to wave attenuation phenomenon, In this study,T the uses of plastic wrap and heat shrinkable two kinds ofas coating materials for the TDR probe were therefore proposed to monitor the layer volumetric water content of the bentonite as the re-saturation experiment. The results stated that insulating materials for tungsten steel bar sensor surface insulation treatment. Insulation treatment, the test found that plastic wrap tungsten steel rods have good insulation capacity and the amount of dielectric constant measured close to the SPV200 bentonite curve, so choose plastic film insulation tungsten steel bar under different temperature systems under the layered water content monitoring experiment.the plastic wrap can maintain the sensitivity of the measurement.
In the re-saturation experiment of bentonite under T-H couplingstratified water content monitoring experiment, it was observed that the volumeetric water content of the bentonite in the bottom layer was higher than that of the theoretical saturated bentonite volume water contentone of (47%) when the bentonite was immersed from the bottom in the 25 ℃ and 40 ℃ systems. The reason is that the bentonite has high swelling ability, the volume of Bentonite expansion after water absorptionre-saturated. In the volume of the fixed mold, tThe bottom lower layer of high degree of saturated bentonite extruded upper layer of low saturation bentonite, resulting in bentonite extrusion deformation,. tVhe poreoid volume and dry densitysoil particle volume changes. TheT trends of the displacement and saturation of the bentonite sample isare consistent with thatthe results of the ABAQUS finite element analysis, . tThe dry density is proportional to the relative displacement, whichwhile it is inversely proportional to the saturation and porevoid ratio. It is showsn that the stratification of this study The moisture content monitoring and measuring systemusing TDR canis effectively carry out the monitoring of the volume water content of bentonite test specimen in T-H coupling small scale experiment.
關鍵字(中) ★ 深地層處置
★ 緩衝材料
★ TDR時域反射法
★ 有限元素分析
★ 熱-水耦合效應
關鍵字(英)
論文目次
目錄 vi
圖目錄 viii
表目錄 xii
摘要 xiv
Abstract xvi
致謝 xix
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3研究方法與流程 4
第二章 文獻回顧 7
2.1 用過核子燃料最終處置場設計概念 7
2.2 用過核子燃料之緩衝材料性質 9
2.2.1 緩衝材料之概念與所需功能 9
2.2.2 緩衝材料結構與劣化性質 12
2.3 緩衝材料之熱學原理 14
2.3.1熱學基本概念 14
2.3.2 熱傳基本概念(Heat Transfer) 15
2.3.3熱傳導係數定義 15
2.3.4暫態熱源法之熱探針法(Transient State of Thermal Needle Probe) 18
2.4 TDR時域反射技術原理 22
2.4.1 物質電學特性 22
2.4.2 土壤電學性質與含水量特性之關係 25
2.4.3 TDR時域反射法 27
2.4.4土壤電學性質與溫度特性之關係 29
2.5 T-H-M-C耦合效應 30
2.5.1 瑞典SKB-P-14-22試驗報告 30
2.5.2 中國THMC耦合相關試驗研析 41
2.5.3 日本THMC耦合相關試驗報告 51
2.5.4 DECOVALEX-THMC耦合效應國際研析 62
2.5.5 膨潤土試體回脹行為及乾密度改變探討 64
第三章 試驗材料與方法 65
3.1 試驗材料與儀器設備 65
3.1.1 試驗相關儀器 67
3.1.2 T-H耦合小型試驗模具設計 70
3.1.3 TDR含水量監測系統 72
(a) TDR感測器改良 75
(b) TDR感測器率定 78
(c) 分層體積含水量計算 80
3.2 SPV200膨潤土電學性質量測 82
3.2.1 膨潤土含水量控制 82
3.2.2 含水量-視介電常數-溫度三相圖建立 83
3.2.3 TDR感測器絕緣改良 84
3.3緩衝材料T-H耦合小型試驗 91
3.3.1緩衝材料分層含水量歷時監測-25 ℃、40 ℃、60 ℃ 91
3.3.2緩衝材料分層含水量歷時監測模擬分析 95
第四章 試驗結果與分析 99
4.1 SPV200膨潤土電學性質量測 99
4.1.1 鎢鋼棒感測器絕緣改良 99
4.1.2含水量-視介電常數-溫度三相圖建立 112
4.2緩衝材料T-H耦合小型試驗 116
4.2.1緩衝材料分層含水量歷時監測-25 ℃、40 ℃、60 ℃ 116
4.2.2緩衝材料試體浸水模擬分析 125
4.2.3小結 137
第五章 結論與建議 139
5.1結論 139
5.2建議 140
參考文獻

王雅薇,(2008),「緩衝材料在熱/水力耦合作用下溫度分布與水力傳導性研究」,國立中央大學,碩士論文。
莊怡芳,(2008),「未飽和緩衝材料吸力與水力傳導度推求及再飽和行為」,國立中央大學,碩士論文。
行政院原子能委員會,(2010),「放射性物料管理法」,行政院原子能委員會放射性物料管理局,華總一義字第09100248760號。
林伯聰,(2013),「國際高放射性廢棄物最終處置場址技術準則之研究」,行政院原子能委員會放射性物料管理局,委託研究計畫研究報告。
黃偉慶,(2014),「用過核子燃料深層地質處置場近場緩衝材料耦合效應研析」,行政院原子能委員會放射性物料管理局,委託計畫研究期末報告。
賈善坡、冉小豐、王越之、肖桃李、譚賢君,(2012),「變形多孔介質溫度– 滲流– 應力完全耦合模型及有限元分析」,岩石力學與工程學報,第31 卷。
蔡家恩,(2016),「用過核子燃料最終處置場緩衝材料之熱-水耦合實驗及模擬」,國立中央大學,碩士論文。
李冠宏,(2016),「最終處置場近場環境對緩衝回脹壓力之影響」,國立中央大學,碩士論文。
放射性廃棄物研究,(2009),「緩衝材大型試験設備 (BIG-BEN) における熱-71<-応力連成試験」,Vol.16 No.1。
原子力バックエンド研究,(1994),「緩衝材の地球化学プロセスに着目した熱-水-化学連成挙動に関する工学規模の人工バリア試験と解析評価」,Vol. 1, No. 1。
総合資源エネルギー調査会,(2015),「地層処分技術 WG 第 12 回会合参考資料」,総合資源エネルギー調査会電力・ガス事業分科会 原子力小委員会。
JNC,(1999),「熱的特性の緩衝材仕樣に対する影響」,TN 8400-99-052,核燃料サイクル開發機構。
PNC,(1992),「緩衝材の熱物性試験」,TN 1410-92-052,動力炉・核燃料開発事業团。
JAEA-Data-Code,(2016),「幌延深地層研究計画における人工バリア性能確認試験計測データ集」,幌延深地層研究センター。
JAEA-Data-Code,(2016),「幌延深地層研究計画における人工バリア性能確認試験-大口径掘削機の開発、模擬オーバーパック、緩衝材および埋め戻し材の製作」,幌延深地層研究センター。
JAEA-Data-Code,(2016),「幌延深地層研究計画における人工バリア性能確認試験-平成27年研究計畫成果、平成28年研究計畫」,幌延深地層研究センター。
ASTM (2014). “Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure” D5334.
Baker, J.M., and Allmaras, R.R. (1990). “System for automation and multiplexing soil moisture measurement by time-domain reflectometry.” Soil Sci Soc. Am J., Vol. 54, pp. 1-6.
Chen, L., Liu, Y.M., Wang, J., Cao, S.F., Xie, J.L., Ma, L.K., Zhao, X.G., Li, Y.W., and Liu, J. (2014). “Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test.” Engineering Geology, Vol. 172, pp. 57–68.
Davis, J.L., and Annan, A.P. (1977). “Electromagnetic determination of soil moisture: progress report Ι.” Canadian Journal of Remote Sensing, Vol. 3, pp. 76-86.
Fabrice, D., Chao, L., and Lyesse, L. (2013). “THM coupling sensitivity analysis in geological nuclear waste storage.” Engineering Geology, Vol. 163, pp. 113–121.
Fälth B., and Hökmark H. (2006). “Mechanical and thermo-mechanical discrete fracture near-field analyses based on preliminary data from the Forsmark.” Simpevarp and Laxemar sites, SKB R-06-89, Svensk Kärnbränslehantering AB.
Tsang, C.F., Barnichon, J.D., Birkholzer, J., Li, X.L. Liu, H.H., and Sillen, X. (2012). “Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations.” International Journal of Rock Mechanics & Mining Sciences, Vol. 49, pp. 31–44.
Heimovaara, T.J. (1993). “Design of triple-wire time domain reflectometry probes in practice and theory.” Soil Sci. Soc. Am. J., Vol. 57, pp. 1410–1417.
Hudsona, J.A., Stephanssonb, O., Anderssonc, J., Tsangd, C.F., and Jingb, L. (2001). “Coupled T–H–M issues relating to radioactive waste repository design and performance.” International Journal of Rock Mechanics & Mining Sciences, Vol. 38, pp. 143–161.
Kristensson O., and Hökmark H. (2007). “Prototype Repository. Thermal 3D modelling of Prototype Repository.” SKB IPR-07-01, Svensk Kärnbränslehantering AB.
Ledieu, J., De Ridder, P., and Dautrebande, A. (1986). “A method for measuring soil moisture by time domain reflectometry.” Journal of Hydrology, Vol. 88, pp. 319-328.
SKB (2009b). “Strategy for thermal dimensioning of the final repository for spent nuclear fuel.” Techical Report, R-09-04.
SKB (1999). “Deep repository for spent nuclear fuel: SR 97 post-closure safety.” SKB Technical Report 99-06-Main Report Summary.
指導教授 黃偉慶、鐘志忠 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明