博碩士論文 104322606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.145.174.253
姓名 蘇羅羅(Roro Sulaksitaningrum)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Investigating the Rejuvenating Effect of Different Recycling Agents on the Performance of Aged Asphalt Binder and Asphalt Concrete)
相關論文
★ 公共工程統包模式執行專案成員間問題 之研究★ 水泥製程於資源再利用之研究
★ 防水毯的生管與品管之探討★ 建置生命紀念園區營運階段管理模式之研究 以新北市某民間公共紀念園區為例
★ 軍用機場跑道鋪面維護管理暨搶修作業機制之研究★ TAF 檢驗機構認證申請之研究- 以混凝土後置式化學錨栓檢驗為例
★ 利用UML建構實驗室資訊管理平台-以合約審查為例★ 營建施工管理導入即時性資訊傳遞工具功能需求之研究
★ 鋪面養護決策支援分析模式之研究★ 營建材料實驗室量測系統評估及誤差分析
★ 以績效為基礎的公路養護組織與機制之研究★ 智慧型鋪面檢測車平坦度量測驗證與應用
★ 公路設施養護管理程序建立及成本分析之研究-以IDEF方法建立鋪面養護作業程序★ 利用花崗岩及玻璃回收料製造功能性人造石材之研究
★ 自動化鋪面平整度量測分析與破壞影像偵測系統之研究★ 鋪面缺陷影像辨識系統應用於路網檢測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 再生劑可降低刨除料添加於瀝青混凝土所產生的老化情形,加上目前臺灣的道路經由養護及修復後會產生大量的刨除料,故本研究希望能找出最適之再生劑添加量於刨除料之比例。本研究將使用不同等級的再生劑(RA)添加於道路刨除料中進行兩階段的研究。分別為RA1-1、RA1-2、RA25-2及RA75-2,並以AI MS-2作為規範。由於台灣日常道路維護和修復,刨鋪產生大量瀝青刨除料(RAP)。本研究旨在實驗室研究再生劑(RA)對老化瀝青混合料和瀝青混凝土的性能的恢復作用,以增加RAP的用量。該研究將40%的100,000 poise回收瀝青黏合劑(RAB)與AC 20作為原始黏合劑和包含RA 1-1,RA 1-2,RA 25-2和RA 75-2的四種類型的RA混合。第一階段採用瀝青混凝土協會MS-2(AI MS-2)的黏滯度混合表,臺灣通常用此找到混合料的最佳RA含量。第一階段的結果表明RA能夠恢復RAB。然而,Multiple Stress Creep Recovery(MSCR)測試的結果表明,該方法高估了混合料中RA的添加量,導致的RAB混合料極易產生車轍。實驗中的大多數RAB混合料皆高於規範最高允許的標準車流量4.5 kPa-1。接著,第二個實驗針對瀝青混凝土進行假設,更接近其特性並解決了車轍問題。採用針入度尋找混合料中的最佳RA需求量。結果表明,經過觀察的混合料中RA 1-1,RA 1-2,RA 25-2和RA 75-2的需要量分別為39.08%,13.99%,5.71%和6.43%。台灣使用的規範規定當12.5mm的車轍深度發生時,最大滾壓次數必須高於12000次。漢堡車輪跟踪測試的結果表明,RA 1-1能夠恢復RAB,針入度顯現出良好的抗車轍性能,而RA 1-2 MIX的結果大不相同。這是由於RA 1-2的針入度和流變試驗易受溫度和頻率變化影響。更進一步說,RA 1-2的化學成分顯示出高的樹脂和芳香含量,產生具有更黏稠結構的瀝青黏合劑。因此,對於恢復嚴重老化和相當高含量的RAB的情況,僅依賴於黏滯度測試和AI MS-2是不夠的,根據針入度決定RA,然後也考慮RA的化學成分及其流變試驗更為合適。
摘要(英) Due to the routine road maintenance and rehabilitation in Taiwan, milling process produces big pile of Recycled Asphalt Pavement (RAP). This study then aims to perform laboratory investigation to discover the rejuvenating effect of Recycling Agent (RA) on the performance of aged asphalt binder and asphalt concrete in order to increase RAP usage. This study blends 40% of 100,000 poise Recycled Asphalt Binder (RAB) with AC 20 as virgin binder and four types of RA comprising RA 1-1, RA 1-2, RA 25-2, and RA 75-2. The first phase which focus on asphalt binder employed viscosity blending chart from Asphalt Institute MS-2 (AI MS-2) which Taiwan commonly uses to find optimum necessary RA in the blends. The results of first phase indicate that RA are able to rejuvenate RAB. However, the results of Multiple Stress Creep Recovery (MSCR) test indicate that this method mislead the addition of RA in the blend and results in softer RAB Blends which is suscpetible to rutting. Most of the RAB blends are above the maximum allowable Jnr for standard traffic, 4.5 kPa-1. Then, the second experimental which focus on asphalt concrete was carried out with assumption that it will be more compatible with their characteristic and solve the problem in rutting. It employed penetration grade to find optimum necessary RA in the blends. The results shows that the decreasing of RA 1-1, RA 1-2, RA 25-2, and RA 75-2 needed in the blends about 39.08%, 13.99%, 5.71%, and 6.43% can be observed respectively. Taiwan sets the standard that when the 12.5 mm rut depth occured, the maximum number of passes through this rut of depth must be higher than 12,000 passes. The result of Hamburg Wheel Tracking test shows that RAB rejuvenated by RA 1-1 which based on penetration grade shows good rutting performance, unlike the results of RA 1-2 MIX. It is due to characteristic of RA 1-2 which is susceptible to temperature and frequency change based on its penetration index and rheological test respectively. Moreover, chemical components of RA 1-2 shows high in resin and aromatic content which produce asphalt binder with more viscous structure. Thus, for the case of rejuvenating severely aged and quite high content of RAB in the blend, relying on only viscosity test and AI MS-2 is not adequate. Determining RA based on penetration grade, then also considering the chemical component of RA and its rheological test is more compatible.
關鍵字(中) ★ RAB
★ RA
★ 化學
★ 車轍
關鍵字(英) ★ RAB
★ RA
★ Chemical
★ Rutting
論文目次 TABLE OF CONTENTS


ABSTRACT i
摘要 ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF EQUATIONS x
Abbreviations, Acronyms and Symbols xi
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 2
1.3 Research Scope 2
1.4 Research Flowchart 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 Asphalt Containing Recycled Asphalt Pavement (RAP) 5
2.2 Asphalt and Its Chemical Components 9
2.3 Performance-related Tests of Asphalt 12
2.3.1 Rutting Performance 12
2.3.2 Fatigue Performance 18
2.4 Aging of Asphalt 19
CHAPTER 3 RESEARCH METHODOLOGY 21
3.1 Phase 1 (Asphalt Binder) 21
3.1.1 Materials 23
3.1.2 Extraction and Recovery of Recycled Asphalt Pavement (RAP) 23
3.1.3 Determining RAB Blend 25
3.1.4 Physical Properties Tests of Asphalt Binder 28
3.1.5 Chemical Compositions Test 29
3.1.6 Rheological Tests on Asphalt Binder Using Dynamic Shear Rheometer (DSR) 30
3.1.7 Aging Treatment 31
3.2 Phase 2 (Asphalt Concrete) 33
3.2.1 Materials 34
3.2.2 Extraction and Recovery of Recycled Asphalt Pavement (RAP) 34
3.2.3 Determining RAB Blend 34
3.2.4 Physical Properties Tests of Asphalt Binder 35
3.2.5 Rutting Test of Asphalt Concrete 36
CHAPTER 4 RESULTS AND DISCUSSIONS 38
4.1 Phase 1 (Asphalt Binder) 38
4.1.1 Basic Materias 38
4.1.2 RAB Blends 41
4.1.3 Viscosity of RAB Blends 41
4.1.4 Penetration of RAB Blends 42
4.1.5 Chemical Components of RAB Blends 45
4.1.6 Rheological Properties of RAB Blends 48
4.2 Phase 2 (Asphalt Concrete) 57
4.2.1 Basic Materials 57
4.2.2 RAB Blends 58
4.2.3 Penetration Index of RAB Blends 59
4.2.4 Rutting Test Using Hamburg-Wheel Track 59
4.3 Discussion of Phase 1 and Phase 2 62
CHAPTER 5 CONCLUSIONS AND RECCOMENDATIONS 65
6.1 Conclusions 65
6.2 Recommendations 65
REFERENCES 67
APPENDIX TLC-FID Chromatogram 73
參考文獻

REFERENCES

[1] C. Chui-Te, "Current Pavement Technologies in Taiwan," in Fourth US-Taiwan Bridge Engineering Workshop, Princeton, New Jersey, 2008.
[2] R.-M. Wang, A Study of Improving Durability of Recycled Asphalt Concrete Applied in Subtropical Areas, Taiwan: Master Thesis, National Central Univeristy, 2009.
[3] J. P. Zaniewski and M. E. Pumphrey, Evaluation of Performance Graded Asphalt Binder Equipment and Testing Protocol, West Virginia: Department of Civil and Environmental Engineering, 2014.
[4] F. Zhou, S. Im, D. Morton, R. Lee, S. Hu and T. Scullion, "Rejuvenator Characterization, Blend Characteristics, and Proposed Mix Design Method," Journal of The Association of Asphalt Paving Technologists, vol. 84, pp. 675-704, 2015.
[5] M. Mohajeri, "Hot Mix Asphalt Recycling: Practices and Principles," TU Delft, Delft University of Technology (Doctoral dissertation), Netherlands, 2015.
[6] AI MS-2, Manual Series No.02 (MS-2) Asphalt Mix Design Methods 7th Edition, USA: Asphalt Institute, 2014.
[7] H. M. Silva, J. R. Oliveira and C. M. Jesus, "Are totally recycled hot mix asphalts a sustainable alternative for road paving?," Resources, Conservation and Recycling, vol. 60, pp. 38-48, 2012.
[8] S. Nahar, A. Schmets, E. Schlangen, M. Shirazi, M. van de Ven, G. Schitter and A. Scarpas, "Turning Back Time: Rheological and Microstructural Assessment of Rejuvenated Bitumen," in 3rd Annual Meeting Transportation Research Board, Washington, USA, 2014.
[9] ASTM D4552, Standard Practice for Classifying Hot-Mix Recycling Agents, Pennsylvania: American Society for Testing and Materials, 2010.
[10] R. Romera, A. Santamaria, J. J. Pena, M. E. Munoz, M. Barral, E. Garcia and V. Janez, "Rheological Aspects of the Rejuvenation of Aged Bitumen," Rheological Acta, vol. 45, no. 4, pp. 474-478, 2006.
[11] J. Shen, M. Konno and M. Takahashi, "Evaluation of recycled asphalt by SHRP binder specifications," Journal of Pavement Engineering, JSCE, vol. 6, pp. 54-60, 2001.
[12] V. H. Nguyen, "Effects of laboratory mixing methods and RAP materials on performance of hot recycled asphalt mixtures," PhD Dissertation, University of Nottingham, UK, 2009.
[13] R. Karlsson and U. Isacsson, "Material-Related Aspects of Asphalt Recycling—State-of-the-Art," JOURNAL OF MATERIALS IN CIVIL ENGINEERING, vol. 18, pp. 81-92, 2006.
[14] J. Read and D. Whiteoak, The Shell Bitumen Handbook, London: Thomas Telford, 2003.
[15] O. A. Ehinola, O. A. Falode and G. Jonathan, "Softening point and Penetration Index of Bitumen from Parts of Southwestern Nigeria," NAFTA, vol. 63, no. 9-10, pp. 319-323, 2012.
[16] D. Lesueur, "The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification," Advances in Colloid and Interface Science, vol. 145, pp. 42-82, 2009.
[17] H. Fazaeli, H. Behbahani, A. A. Amini, J. Rahmani and G. Yadollahi, "High and Low Temperature Properties of FT-Paraffin-Modified Bitumen," Advances in Materials Science and Engineering, vol. 2012, pp. 1-7, 2012.
[18] S.-C. Huang and H. Di Benedetto, Advances in Asphalt Materials, United Kingdom: Woodhead Publishing, 2015.
[19] J. G. Speight, Asphalt Materials Science and Technology, Oxford: Butterworth-Heinemann, 2015.
[20] F. T. Yen and G. V. Chilingarian, Asphaltenes and asphalts 2, Elsevier, 2000.
[21] M. Subirana and E. Y. Sheu, Asphaltenes: fundamentals and applications, Springer Science & Business Media, 2013.
[22] Y. N. Gotame, Relationship Between Physical and Chemical Properties of Straight and Recovered Asphalt Binders from Ontario, Canada: Queen′s University (Master Thesis), 2016.
[23] A. Kahanar, Physical and Chemical Aging Behavior of Asphalt Cements from Two Northern Ontario Pavement Trials, Canada: Queen′s University (Doctoral Dissertation), 2010.
[24] T. Yen and G. V. Chilingarian, Asphaltenes and Asphalts, 2, Los Angeles, USA: ELSEVIER, 2000.
[25] S. Ashoori, M. Sharifi, M. Masoumi and M. M. Salehi, "The relationship between SARA fractions and crude oil stability," Egyptian Journal of Petroleum, vol. 26, no. 1, pp. 209-213, 2017.
[26] M. Anderson, J. D′Angelo and D. Walker, "Asphalt: The Magazine of The Asphalt Institute," Asphalt Institute, [Online]. Available: http://asphaltmagazine.com/mscr-a-better-tool-for-characterizing-high-temperature-performance-properties/. [Accessed 20 March 2017].
[27] K. Kubo, "Recycling in Japan," Application of Reclaimed Asphalt Pavement and Recycled Asphalt Shingles in Hot-Mix Asphalt, Vols. TR Circular E-C188, pp. 60-66, 2014.
[28] J. Zhang, L. F. Walubita, A. N. Faruk, P. Karki and G. S. Simate, "Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance – A laboratory study," Construction and Building Materials, vol. 94, pp. 218-227, 2015.
[29] C. Nicholls, J. Valentin, L. Soukupova, K. Mollenhauer, BRRC, M. Tusar, N. Bueche, S. Bressi, C. Karcher, F. Batista, M. S. d. Costa, G. Malkoc, TU Vienna and H. Soenen, "Functional Durability-related Bitumen Specification (FunDBitS): Identified correlations between bitumen and asphalt properties (Interim Report)," CEDR Call 2013: Energy Efficiency – Materials and Technology, 2015.
[30] AASHTO M332, Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test, Washington, D.C.: American Association of State and Highway Transportation Officials, 2014.
[31] AASHTO T324, Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA), Washington, D.C.: American Association of State Highway and Transportation Officials, 2016.
[32] F. Rahman and M. Hossain, "Report No. KS-14-1: Review and Analysis of Hamburg Wheel Tracking Device Test Data," Kansas Department of Transportation, Kansas, 2014.
[33] Y. Yildrim, W. Jayawickrama, M. S. Hossain, A. Alhabshi, C. Yildrim, A. d. F. Smit and D. Little, "FHWA/TX-05/0-1707-7: HAMBURG WHEEL-TRACKING DATABASE ANALYSIS," Texas Department of Transportation, Texas, 2006.
[34] Y. Yildrim and K. H. Stokoe II, "FHWA/TX-06/0-4185-5: Analysis of Hamburg Wheel Tracking Device Results in Relation to Field Performance," Texas Department of Transportation, Texas, 2006.
[35] C. Hintz and H. Bahia, "Simplification of Linear Amplitude Sweep Test and Specification Parameter," Transportation Research Board of the National Academies, vol. 2370, pp. 10-16, 2013.
[36] U. A. Mannan, M. R. Islam and R. A. Tarefder, "Effects of recycled asphalt pavements on the fatigue life of asphalt under different strain levels and loading frequencies," International Journal of Fatigue, vol. 78, pp. 72-80, 2015.
[37] R. L. Cosme, J. E. S. L. Teixeria and J. L. Calmon, "Use of frequency sweep and MSCR tests to characterize asphalt mastics containing ornamental stone residues and LD steel slag," Construction and Building Materials, vol. 122, pp. 556-566, 2016.
[38] L. Baklokk, R. Skoglund, B. Kalman and P. Peltonen, "TR 538 NORDTEST Report: Superpave Test Methods for Asphalt Procedure for DSR Testing," NORDTEST, Finland, 2002.
[39] S. Xu, J. Yu, C. Zhang and Y. Sun, "Effect of ultraviolet aging on rheological properties of organic intercalated layered double hydroxides modified asphalt," Construction and Building Materials, vol. 75, pp. 421-428, 2015.
[40] ASTM D2172, Standard Test Methods for Quantitative Extraction of Asphalt Binder from Asphalt Mixtures, Pennsylvania: American Society for Testing and Materials, 2017.
[41] AASHTO T164, Standard Method of Test for Quantitative Extraction of Asphalt Binder from Hot Mix Asphalt (HMA), Washington, D.C.: American Association of State Highway and Transportation Officials, 2014.
[42] ASTM D5404, Standard Practice for Recovery of Asphalt from Solution Using the Rotary Evaporator, Pennsylvania: American Society for Testing and Materials, 2012.
[43] AASHTO T49, Standard Method of Test for Penetration of Bituminous Materials, USA: American Association of State and Highway Transportation Officials, 2015.
[44] ASTM D5, Standard Test Method for Penetration of Bituminous Materials, Pennsylvania: American Society for Testing and Materials, 2013.
[45] A. D946, Standard Specification for Penetration-Graded Asphalt Binder for Use in Pavement Construction, Pennsylvania: American Society for Testing and Materials, 2015.
[46] ASTM D4402, Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer, Pennsylvania: American Society for Testing and Materials, 2015.
[47] AASHTO T316, Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer, Washington, D.C.: American Association of State Highway and Transportation Officials, 2013.
[48] Z. X. Yang, A study on Establishing Performance Evaluation of Recycled Asphalt Mixed with Recycling Agents, Taiwan: National Central University (Master Thesis), 2014.
[49] AASHTO T350, Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using Dynamic Shear Rheometer (DSR), Washington, D.C.: American Association of State Highway and Transportation Officials, 2014.
[50] ASTM D7405, Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer, Pennsylvania: American Society for Testing and Materials, 2015.
[51] S.-H. Chen, "Taipave Mixture Design," PhD Dissertation, National Central University, Taiwan, 2003.
[52] AASHTO TP101, Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep, Washington, D.C.: American Association of State Highway and Transportation Officials, 2012.
[53] ASTM D2872, Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test), Pennsylvania: American Society for Testing and Materials, 2012.
[54] ASTM D4799, Standard Practice for Accelerated Weathering Test Conditions and Procedures for Bituminous Materials (Fluorescent UV, Water Spray, and Condensation Method), Pennsylvania: American Society for Testing and Materials, 2008.
[55] AASHTO T53, Standard Method of Test for Softening Point of Bitumen (Ring-and-Ball Apparatus), Washington, D.C.: American Association of State Highway and Transportation Officials, 2009.
[56] ASTM D36, Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus), Pennsylvania: American Society for Testing and Materials, 2014.
[57] A. Ongel and M. Hugener, "Impact of rejuvenators on aging properties of bitumen," Construction and Building Materials, vol. 94, pp. 467-474, 2015.
[58] S. Xu, J. Yu, C. Hu, L. Jia and L. Xue, "Performance evaluation of asphalt containing layered double hydroxides with different zinc ratio in the host layer," Petroleum Science and Technology, vol. 35, no. 2, pp. 127-133, 2017.
[59] S. Ashoori, M. Sharifi, M. Masoumi and M. M. Salehi, "The relationship between SARA fractions and crude oil stability," Egyptian Journal of Petroleum, vol. 26, pp. 209-213, 2016.
[60] H. Soenen, T. Blomberg, T. Pellinen and O.-V. Laukkanen, "Soenen, H., Blomberg, T., Pellinen, T. and Laukkanen, O.V., 2013. The multiple stress creep-recovery test: a detailed analysis of repeatability and reproducibility," Road Materials and Pavement Design, vol. 14, no. S1, pp. 2-11, 2013.
[61] S.-H. Yang and L.-C. Lee, "Characterizing the chemical and rheological properties of severely aged reclaimed asphalt pavement materials with high recycling rate," Construction and Building Materials, vol. 111, pp. 139-146, 2016.
[62] N. S. Mashaan and M. R. Karim, "Investigating the rheological properties of crumb rubber modified bitumen and its correlation with temperature susceptibility," Materials Research, vol. 16, no. 1, pp. 116-127, 2013.
[63] A. D4552, Standard Practice for Classifying Hot-Mix Recycling Agents, Pennsylvania: American Society for Testing and Materials , 2016.
指導教授 陳世晃、林志棟(Shih-Huang Chen Jyh-Dong Lin) 審核日期 2017-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明