博碩士論文 104322609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.149.26.40
姓名 陳明景(Minh-Canh Tran)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具不同上部結構之樁基礎受振行為★ 基盤土壤液化對上方土堤位移的影響
★ 回填與緩衝材料之動態強度★ 砂質土壤中柔性擋土牆在動態載重下的行為
★ Effect of Vertical Drain Methods on The Soil Liquefaction★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
★ Seismic response of sheet pile walls with and without anchors by centrifuge modeling tests★ Effect of Vegetation on The Stability of Sandy Slope by Centrifuge Modeling
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在中央大學土木系大型力學實驗館離心模型實驗室進行物理模型試驗,探討在重力、降雨和地震等不同自然營力作用下的邊坡破壞行為,試驗使用80 %石英砂混和20 %高嶺土的混和土壤,並於最佳含水量條件下夯實製作模型邊坡。第一個系列試驗主要改變邊坡內部薄礫石層的傾向,並逐漸增加試體所受到的重力場,直至邊坡發生破壞,用以瞭解邊坡內部若含一透水之薄礫石層對邊坡穩定性的影響;此外,亦規劃三組試驗探討降雨及地震條件下邊坡的破壞行為。離心模型模擬過程中皆透過不同角度的相機記錄破壞過程,從照片中可以追蹤破壞面的發展與位置,試驗前後邊坡的崩塌與堆積行為則以雷射位移計掃描獲取高程與位移數據。
離心模型試驗結果顯示(1)薄礫石層的傾斜方向會影響邊坡的穩定性,當薄礫石層的傾向與坡面傾向相同時,邊坡的安全係數最小;但是在邊坡幾何條件、土壤材料和夯實度相同情況下,邊坡破壞面位置則不因薄礫石層的傾角而改變。(2)降雨強度會影響土壤的入滲範圍,而水在土壤的滲透能力會影響地表逕流情況;在總降雨量相同時,降雨及地表逕流引致的坡面侵蝕與坡趾的堆積範圍幾乎一致。(3)地震對邊坡穩定性的影響明顯大於重力和降雨條件,從張力裂縫分布的位置來看,影響區域為坡頂至0.8倍邊坡高度的範圍。
摘要(英) This study focused the failure behaviours of slope stability under gravitational, rainfall and earthquake condition. A series of centrifuge model tests were conducted to study the slope stability at the Experimental Center of Civil Engineering, National Central University. Plane – strain slope models were prepared from sand which is mixed with fine content of 20% (kaolinite) and compacted at optimum water content. Under gravitational condition, three models were carried out different directions of a gravel layer placed inside a slope. During test, the acceleration was gradually increased until the slope failure occurred; the model failing at the lowest acceleration would be chosen to observe the behaviours of slope under rainfall and earthquake condition. The process of failure was recorded through cameras during centrifuge spinning. Additionally, the failure surface was traced from the photos; the elevation and displacement were obtained from scanned data before and after the tests.
The results indicated the effects of the direction of the gravel layer on slope stability, that the slope with a normal inclination of the gravel layer was the most unstable in three directions (normal, reverse, horizontal). Moreover, the failure surface of the models was almost the same under the same slope geometrical conditions, soil materials and compaction degree. An observation showed that the behaviours of erosion induced on slopes by rainfall were almost similar with a constant of cumulative rainfall. The effect of intensity played an important role on the infiltration of water. Additionally, earthquake significantly impacted on slope stability more than gravity and rainfall condition, which had a maximum effective zone of 0.8 time of slope height.
關鍵字(中) ★ 離心模擬試驗
★ 砂性邊坡
★ 降雨
★ 重力
★ 地震
關鍵字(英) ★ Centrifuge modelling
★ sandy slope
★ rainfall
★ gravity
★ earthquake
論文目次 CHAPTER 1 ................................................................................................................................1
INTRODUCTION ........................................................................................................................1
1.1 RESEARCH MOTIVATION .............................................................................................1
1.2 AIMS OF RESEARCH .......................................................................................................2
1.3 CONCEPTS OF RESEARCH ............................................................................................2
CHAPTER 2 ................................................................................................................................4
LITERATURE REVIEW .............................................................................................................4
2.1 HISTORICAL CASES........................................................................................................4
2.2 BASIC CONCEPTS............................................................................................................5
2.2.1 Landslide......................................................................................................................5
2.2.2 Factor of safety .............................................................................................................5
2.2.3 Analysis Methods .........................................................................................................6
2.3 RELATIVE STUDIES ........................................................................................................8
CHAPTER 3 ...............................................................................................................................17
CENTRIFUGE MODELING PRINCIPLES AND APPARATUS ............................................17
3.1 THE PRINCIPLES OF GEOTECHNICAL ENGINEERING .........................................17
3.2 TEST FACILITIES ...........................................................................................................20
3.2.1 NCU – Geotechnical centrifuge..................................................................................20
3.2.2 Data acquisition system ..............................................................................................21
3.3 INSTRUMENTS ...............................................................................................................22
3.3.1 Aluminium container ..................................................................................................22
3.3.2 Rainfall system ...........................................................................................................23
3.3.3 Torvane .......................................................................................................................23
3.3.4 Accelerometers ...........................................................................................................23
3.3.5 Cameras ......................................................................................................................24
3.4 TEST MATERIALS .........................................................................................................24
CHAPTER 4 ...............................................................................................................................40
CENTRIFUGE MODELLING – TEST RESULTS ...................................................................40
4.1 TEST PROCEDURES ......................................................................................................40
4.1.1 Test Configuration ......................................................................................................40
4.1.2 Model preparation.......................................................................................................40
4.1.3 Process of centrifuge test ............................................................................................41
4.1.4 Test Planning ..............................................................................................................42
4.2 GRAVITATIONAL CONDITION...................................................................................46
4.2.1 Test – G15...................................................................................................................46
4.2.2 Test – G35 ...................................................................................................................51
4.2.3 Test – G40 ...................................................................................................................58
4.2.4 Test – G55 ...................................................................................................................65
4.3 EARTHQUAKE CONDITION (TEST – E0.5)................................................................72
4.4 RAINFALL CONDITION ................................................................................................80
4.4.1 Test – R88 ...................................................................................................................80
4.4.2 Test – R197 .................................................................................................................88
CHAPTER 5 ...............................................................................................................................96
DISCUSSION AND CONCLUSIONS ......................................................................................96
5.1 DISCUSSION ...................................................................................................................96
5.1.1 Gravitational condition ...............................................................................................96
5.1.2 Rainfall condition......................................................................................................... 103
5.1.3 Earthquake, gravity and rainfall condition...................................................................... 107
5.2 CONCLUSIONS .............................................................................................................110
References ........................................................................................................................... 112
參考文獻 [1] Askarinejad, A., and Springman, S. M., “Centrifuge modelling of the effects of vegetation on the response of a silty sand slope subjected to rainfall,” Computer Methods and Recent Advances in Geomechanics - Proceedings of the 14th Int. Conference of International Association for Computer Methods and Recent Advances in Geomechanics, IACMAG 2014, pp. 1339-1344, 2015.
[2] Chen, C. Y., “Landslide and debris flow initiated characteristics after typhoon Morakot in Taiwan,” Landslides, Vol.13, No. 1, pp. 153-164, 2016.
[3] Chen, C. W., and Oguchi, T., et al, “Relationship between landslide size and rainfall conditions in Taiwan,” Landslides, 2016.
[4] Chen, C. W., Chen, H., and Oguchi, T., “Distributions of landslides, vegetation, and related sediment yields during typhoon events in northwestern Taiwan,” Geomorphology, Vol. 273, pp. 1-13, 2016. [5] Chen LK., Chen SC., Ke MC., “Investigation of the Freeway No. 3 Landslide in Taiwan” Engineering Geology for Society and Territory, Vol 2, pp 374, 2015
[6] Cascini, L., Cuomo, S., Pastor, M., and Sorbino, G., “Modeling of Rainfall-Induced Shallow Landslides of the Flow-Type,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 1, pp.85-98, 2010.
[7] Collins, B. D., and Znidarcic, D., “Stability Analyses of Rainfall Induced Landslides,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 4, pp. 362-372, 2004.
[8] Deng, Y. C., Tsai, F., and Hwang, J. H., “Landslide characteristics in the area of Xiaolin Village during Morakot typhoon.” Arabian Journal of Geosciences, Vol.9, No. 5, 2016.
[9] Ling, H., Ling, H. I., and Asce, M. “Centrifuge Model Simulations of Rainfall-Induced Slope Instability,” Geotechnical and Geoenvironment Enghineering, pp. 1151-1157, 2012.
Page 113
[10] Ling, H. I., Wu, M. H., Leshchinsky, D., and Leshchinsky, B., “Centrifuge Modeling of Slope Instability,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 6, pp. 758-767, 2009.
[11] Liao, S.W., 2000. Landslides Triggered by Chi-Chi Earthquake, Thesis for Master degree, Department of Earth Sciences and Institute of Geophysics National Central University
[12] Matziaris, V., Marshall, A. M., et al. “Centrifuge model study of thresholds for rainfall-induced landslides in sandy slopes,” IOP Conference Series: Earth and Environmental Science, Vol. 26, No. 1, pp. 012032, 2015.
[13] Ng, Charles W. W., Liu, J., Chen, R., and Xu, J., “Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall,” Waste Management, Vol. 38, No. 1, pp. 210-221, 2015.
[14] Park, M. C., “Behavior analysis by model slope experiment of artificial rainfall,” Natural Hazards and Earth System Sciences, Vol. 16, No. 3, pp. 789-800, 2016.
[15] Rabie, M., “Comparison study between traditional and finite element methods for slopes under heavy rainfall,” HBRC Journal, Vol. 10, No. 2, pp. 160-168, 2014.
[16] Sorbino, G., and Nicotera, M. V., “Unsaturated soil mechanics in rainfall-induced flow landslides,” Engineering Geology, Vol. 165, pp. 105-132, 2013.
[17] Shou, K. J., and Lin, J. F., “Multi-scale landslide susceptibility analysis along a mountain highway in Central Taiwan,” Engineering Geology, Vol. 212, pp. 120-135, 2016.
[18] Tu, H. M., and Chen, H. M., “Slopeland hazard and respiratory health: The example of Typhoon Morakot in Taiwan,” Landscape and Urban Planning, Vol. 157, pp. 375-382, 2017.
[19] Tohari, A., Nishigaki, M., and Komatsu, M., “Laboratory Rainfall-Induced Slope Failure with Moisture Content Measurement,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, No. 5, pp. 575 – 587, 2007.
Page 114
[20] Take, W. A., and Beddoe, R. A., “Physical modelling of rainfall-induced flow failures in loose granular soils,” IOP Conference Series: Earth and Environmental Science, Vol. 26, pp. 012001, 2015. [21] Taylor, R.N., “Centrifuges in modelling: principles and scale effects,” Geotechnical centrifuge technology, pp.19-33, 1995.
[22] Vilayvong, K., Yasufuku, N., and Ishikura, R., “Rainfall-induced Soil Erosion and Sediment Sizes of a Residual Soil under 1D and 2D Rainfall Experiments,” Procedia - Social and Behavioral Sciences, Vol. 218, pp. 171-180, 2016.
[23] Wu, L. Z., Zhou, Y., Sun, P., Shi, J. S., Liu, G. G., and Bai, L. Y., “Laboratory characterization of rainfall-induced loess slope failure,” Catena, Vol. 150, pp. 1-8, 2017.#
[24] Wu, C. C., Yen, T. H., Huang, Y. H., Yu, C. Ku., and Chen, S. G., “Statistical characteristic of heavy rainfall associated with typhoons near Taiwan based on high-density automatic rain gauge data,” Bulletin of the American Meteorological Society, Vol. 97, No. 8, pp. 1363-1375, 2016.
[25] Wu, L. Z., Huang, R. Q., Xu, Q., Zhang, L. M., and Li, H. L., “Analysis of physical testing of rainfall-induced soil slope failures,” Environmental Earth Sciences, Vol. 73, No. 12, pp. 8519-8531, 2015.
[26] Yu, Y., Deng, L., Sun, X., and Lu, H., “Centrifuge modeling of a dry sandy slope response to earthquake loading,” Bulletin of Earthquake Engineering, Vol. 6, No. 3, pp. 447-461, 2008.
[27] Wang, R., Zhang, G., and Zhang, J. M., “Centrifuge modelling of clay slope with montmorillonite weak layer under rainfall conditions,” Applied Clay Science, Vol. 50, No. 3, pp. 386-394, 2010.
[28] Zhang, Z., Wang, T., Wu, S., Tang, H. and Liang, C., “Investigation of dormant landslides in earthquake conditions using a physical model,” Landslides, No.2, 2017.
Page 115
[29] Zhang, G., Wang, R., Qian, J., Zhang, Jian M., and Qian, J., “Effect study of cracks on behavior of soil slope under rainfall conditions,” Soils and Foundations, Vol. 52, No. 4, pp. 634-643, 2012.
[30] Zhang, G., Qian, J., Wang, R., and Zhang, J. M., “Centrifuge model test study of rainfall – induced deformation of cohesion soil slopes,” Soils and Foundations, Vol. 51, No. 2, pp. 297-305, 2011.
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明