博碩士論文 104323001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.232.133.141
姓名 黃柏樵(Bo-Chiau Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究
(The Study of Nanopatterned Fluorine doped Tin Oxide Glass Substrates Applied on Perovskite Solar Cells)
相關論文
★ 奈微米球粗化基板技術 暨提升OLED元件出光效率研究★ 銀-聚苯乙烯殼核球於高分子分散液晶薄膜元件之應用
★ ITO 奈微米週期結構電極提升OLED 元件發光效率之研究★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究
★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究★ 超薄類鑽碳膜之研究
★ 利用鈣/鈦複合物作為 鈣鈦礦太陽能電池介孔層之研究★ 在低溫製程下製作鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究
★ 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究★ 快速熱退火之石墨烯特性分析
★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究★ 利用馬倫哥尼效應製備高品質高效率鈣鈦礦太陽能電池
★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池★ 奈米圖案化基板於白光有機發光二極體暨有機鈣鈦礦太陽能電池效率增益之研究
★ 單源熱蒸鍍無機鈣鈦礦薄膜暨特性分析★ ITO奈米週期結構提升鈣鈦礦發光二極體光萃取率之模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文藉由將具奈米凹洞結構之「氟摻雜氧化錫」(FTO)玻璃基板應用於鈣鈦礦太陽能電池,來提高光吸收量,並增加電子傳輸層與主動層之間的接觸表面積,來提高傳遞電子的機會,進而提升電池的電流密度。
我們藉由使用Rsoft光學模擬軟體來模擬使用具奈米結構FTO基板的鈣鈦礦太陽能電池在各波長的光吸收度,結果顯示,在大部分的模擬波長範圍,使用具奈米結構FTO基板的電池的光吸收度都會比使用平面FTO基板的電池要來的高。
具奈米結構FTO基板的製作方式,是先塗佈光阻在FTO基板上,再將奈米SiO2小球鋪排於光阻上,接著以曝光顯影製作出奈米結構凹洞,最後再使用ICP蝕刻,將結構轉移到FTO層。FTO層的厚度約為600nm,凹洞直徑約為350nm,所選用的蝕刻深度分別為100nm、150nm和200nm,。
計算使用結構FTO基板所增加的表面積百分比,蝕刻深度越深的所增加的表面積越多,蝕刻深度為200nm時所增加的表面積大約為93.74%,由此可知會大幅增加抓取電子的機會。
作為對照組之使用平面FTO基板的電池其Jsc為19.27(mA/cm2),PCE為14.21%。而使用蝕刻深度為200nm的FTO基板的電池,在Voc和FF變化不大的情況下,Jsc提高到21.72(mA/cm2)。接著再以增加沉積次數的方式來調整其meso層厚度到最佳後,所量測到的Jsc增加量最高,Jsc為23.81 (mA/cm2),而PCE為17.85%,對PCE的增幅達到25.62%。
摘要(英)
In this study, we applied nanopattened fluorine doped tin oxide (FTO) glass substrates to perovskite solar cells. In order to improve current density of cells by increasing of the surface area of cathode and the light harvesting by active layer.
We used Rsoft optical simulation software to simulate our cells with nanopatterened FTO substrates. As the results, the light absorption of the cells using nanopatterned FTO substrates are higher than the cells using planar FTO substrates in the most range of wavelength.
The method of fabricating nanopattened FTO substrates, first, was coating the FTO electrodes with photoresist, then arrayed monolayer SiO2 nano-spheres on the photoresist. After that, nanopatterns were created on photoresist by photolithography. In the end, transferring the nanopattern from photoresist to FTO by inductively coupled plasma (ICP) etching.
We calculated the increasing of surface area when using nanopattened FTO substrates. The deeper etching depth are, the more increasing are. A 93.74% increasing of surface area was obtained by using 200nm-etching-depthed FTO substrate.
The cell with planar FTO substrates as reference had Jsc of 19.27 mA/cm2 and PCE of 14.21%. The cell with 200nm-etching-depthed FTO substrate raised its Jsc to 21.72 mA/cm2. We further optimize the thickness of the meso layer on the patterned FTO substrates and the result showed the highest Jsc of 23.81 mA/cm2 and PCE of 17.85%, a 25.62% improvement of PCE was obtained.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 奈米結構
關鍵字(英)
論文目次
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池的介紹與種類 2
1-2-1 第一世代太陽能電池 2
1-2-2 第二世代太陽能電池 3
1-2-3第三世代太陽能電池 3
1-3 鈣鈦礦太陽能電池介紹 4
1-4 鈣鈦礦太陽能電池的文獻回顧 6
1-4-1 鈣鈦礦太陽能電池的起源 6
1-4-2 鈣鈦礦太陽能電池-材料改變 6
1-4-3 鈣鈦礦太陽能電池-製程改變 10
1-4-5 鈣鈦礦太陽能電池-機制探討 14
1-4-6 鈣鈦礦太陽能電池-結構製作 16
1-5 研究動機 22
第二章 實驗 23
2-1 實驗藥品與儀器 23
2-1-1 實驗藥品 23
2-1-2 實驗儀器 24
2-2 鈣鈦礦太陽能電池材料製備 25
2-3 鈣鈦礦太陽能電池製作 27
2-4 Rsoft光學模擬參數與模型 29
2-5 具奈米結構FTO玻璃基板製備 29
第三章 結果與討論 32
3-1 成分分析 32
3-2 光學模擬結果 34
3-3 具奈米結構FTO基板之觀測 35
3-3-1 具奈米結構光阻層 35
3-3-2 具奈米結構FTO基板 35
3-3-3 奈米凹洞結構所增加之表面積 35
3-4 鈣鈦礦太陽能電池之觀測 42
3-4-1 沉積TiO2 compact層和TiO2 meso層之無結構FTO基板 42
3-4-2 結構對perovskite層和spiro層厚度之影響 42
3-5 量測結果與討論 45
3-5-1 具奈米結構FTO基板對電池效能之增益 45
3-5-2 meso層厚度對效能之影響 48
第四章 結論 58
參考文獻 59
參考文獻

1. L. Fara and M. Yamaguchi. ’ Advanced Solar Cell Materials, Technology, Modeling, and Simulation’. IGI Global. (2013)
2. G. Conibeer. ’Third-generation photovoltaics’. Materials Today. Vol 10. Issue 11. 42-50. (2007)
3. J. Yan and B. R. Saunders. ’Third-generation solar cells: a review and
comparison of polymer:fullerene, hybrid polymerand perovskite solar cells’. RSC Advances. Vol 4. Issue 82. 43286-43314. (2014)
4. D. Ninno et al. ’Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides’. The American Physical Society. Vol 77. 235214. (2008)
5. T. Miyasaka et al. ‘Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells’. Journal of the American Chemical Society. Vol 131. 6050-6051. (2009)
6. H. Han et al. ’A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability’. Science. Vol 345. Issue 6194. 295-298. (2014)
7. S. I. Seok et al. ’High-performance photovoltaic perovskite layers fabricated through intramolecular exchange’. Science. Vol 348. Issue 6240. 1234-1237. (2015)
8. H. J. Snaith et al. ’Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells’. Nature Communications. Vol 6. 10030. (2015)
9. L. Han et al. ’Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers’. Science. Vol 350. Issue 6263. 944-948. (2015)
10. M. Grätzel et al. ’High efficiency stable inverted perovskite solar cells without current hysteresis’. Energy & Environmental Science. Vol 8. Issue 9. 2725-2733. (2015)
11. H. J. Snaith et al. ’A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells’. Science. Vol 351. Issue 6269. 151-155. (2016)
12. F. Yan et al. ’Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity’. Nature Communications. Vol 7. 11105. (2016)
13. Y. Wang et al. ’Ti/Au Cathode for Electronic transport material-free organicinorganic hybrid perovskite solar cells’. Scientific Reports. Vol 6. 39132. (2016)
14. Y. Yang et al. ’Interface engineering of highly efficient perovskite solar cells’. Science. Vol 345. Issue 6196. 542-546. (2014)
15. A. D. Mohite et al. ’High-efficiency solution-processed perovskite solar cells with millimeter-scale grains’. Science. Vol 347. Issue 6221. 522-525. (2015)
16. M. Grätzel et al. ’A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cell’. Science. Vol 353. Issue 6294. 58-62 (2016)
17. J. Huang et al. ’Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells’. Nature energy. Vol 1. 15001. (2016)

18. C.-H. Chiang and C.-G. Wu. ’Bulk heterojunction perovskite–PCBM solar cells with high fill factor’. Nature Photonics. Vol 10. 196-200. (2016)
19. H. J. Snaith et al. ’Low-temperature processed meso-superstructured to thin-film perovskite solar cells’. Energy & Environmental Science. Vol 6. Issue 6. 1739-1743. (2013)
20. H. J. Snaith et al. ’Sub-150 ℃ processed meso-superstructured perovskite solar cells with enhanced efficiency’. Energy & Environmental Science. Vol 7. 1142-1147. (2014)
21. Q. Zhao et al. ’A polymer scaffold for self-healing perovskite solar cells’. Nature Communications. Vol 7. 10228. (2016)
22. H. J. Snaith et al. ’Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells’. Materials Horizons. Vol 2. 315-322. (2015)
23. D. S. Ginger et al. ’Impact of microstructure on local carrier lifetime in perovskite solar cells’. Science. Vol 348. Issue 6235. 683-686. (2015)
24. A. D. Mohite et al. ’Light-activated photocurrent degradation and self-healing in perovskite solar cells’. Nature Communications. Vol 7. 11574. (2016)
25. R. S. Sanchez and E. Mas-Marza. ’Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells’. Solar Energy Materials & Solar Cells. Vol 158. 189–194. (2016)
26. D. Kim et al. ’UV Degradation and Recovery of Perovskite Solar Cells’. Scientific Reports. Vol 6. 38150. (2016)
27. C. W. Chung et al. ’Performance improvement of dye-sensitized solar cells by surface patterning of fluorine-doped tin oxide transparent electrodes’. Thin Solid Films. Vol 519. Issue 10. 3173-3176. (2011)
28. J. Wu et al. ’Development of Nanopatterned Fluorine-Doped Tin Oxide Electrodes for Dye-Sensitized Solar Cells with Improved Light Trapping’. ACS Applied Materials & Interfaces. Vol 4. Issue 3. 1565-1572. (2012)
29. G. Su et al. ’Highly efficient light management for perovskite solar cells’. Scientific Reports. Vol 6. 18922. (2016)
30. Y. Zhang and Y. Xuan. ’Comprehensive design of omnidirectional high-performance perovskite solar cells’. Scientific Reports. Vol 6. 29705. (2016)
31. S. Yang et al. ’Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells’. Nanoscale. Vol 8. 6393-6402. (2016)
32. B. Ngotawornchai et al. ’Phase Characterization of TiO2 Powder by XRD and TEM’. Kasetsart. Vol 42. 357-361. (2008)
33. Plesco I. et al. ’ Fizică şi tehnică: procese, modele, experimente’. Alecu Russo. (2006)
指導教授 詹佳樺 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明