博碩士論文 104323031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.139.103.49
姓名 尹致超(Jhih-Chao Yin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鑽石應用在功率及頻率半導體元件的發展與挑戰
(The Development and Challenges of Diamond Applied to Power and Frequency Semiconductor Devices)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要進行鑽石半導體元件之文獻整理。鑽石擁有寬能隙、極 高的崩潰電場、載子遷移率和優良的熱性質,是作為功率和頻率元件 最理想的半導體材料。鑽石功率和頻率半導體元件主要以肖特基二極 體、肖特基 p-n 二極體、肖特基 p-i-n 二極體、硼摻雜通道型場效電晶 體、氫端鍵結表面通道型場效電晶體,以及 P 溝道型接面場效電晶體 為主。鑽石肖特基二極體、硼摻雜通道型場效電晶體和 P 溝道型接面 場效電晶體操作溫度可達 500°C。氫端鍵結表面通道型電晶體具有良好 的截止頻率與最大震盪頻率。然而鑽石半導體元件的發展一直受到各 種瓶頸,其中最主要的問題在於鑽石晶圓尺寸過小、晶體品質不佳以 及摻雜製程不易。目前只有 P 型鑽石半導體元件可以在室溫下運作, 尤其是以氫端鍵結表面通道型電晶體為大宗。
摘要(英) This thesis present a survey of diamond semiconductor devices. Diamond is considered to be the ultimate semiconductor for power and frequency devices due to its wide band-gap, high breakdown electric field, high carrier mobility, and superior thermal properties. Diamond power and frequency devices mainly focus on schottky diode, schottky p-n diode, schottky p-i-n diode, boron-doped channel FET, hydrogen-terminated surface channel FET and P channel JFET. Furthermore, the operating temperature of schottky diamond diode, boron-doped channel diamond FET and P channel diamond JFET can reach 500 °C , and hydrogen-terminated surface channel FET has excellent cutoff frequency and maximum oscillation frequency. However, the success of diamond-based semiconductor devices has been difficult due to critical challenges involved with small wafer size, poor quality of crystal and difficult on doping. So far, only P-type diamond semiconductor devices can be used in room temperature, especially hydrogen-terminated surface channel FETs.
關鍵字(中) ★ 鑽石
★ 功率半導體元件
★ 頻率半導體元件
★ P 型鑽石半導體
關鍵字(英) ★ diamond
★ power device
★ frequency device
★ P-type diamond semiconductor
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章、緒論 1
第二章、文獻蒐集方法 6
第三章、結果 9
3.1 鑽石 9
3.1.1 晶體結構及性質 9
3.1.2 散熱機制 10
3.1.3 種類 10
3.1.4 單晶與多晶 11
3.2 合成鑽石技術 12
3.2.1 高溫高壓法 12
3.2.2 化學氣相沉積法 13
3.2.3 拼花成長方法 17
3.3 摻雜 18
3.4 反應離子蝕刻 20
3.5 鑽石二極體 21
3.5.1 鑽石肖特基二極體 22
3.5.2 鑽石肖特基p-n二極體 23
3.5.3 鑽石肖特基p-i-n二極體 24
3.6 鑽石場效電晶體 25
3.6.1 硼摻雜通道型MESFET 26
3.6.2 硼摻雜通道型MISFET 27
3.6.3 氫端鍵結表面通道型MESFET 29
3.6.4 氫端鍵結表面通道型MISFET 30
3.6.5 接面場效電晶體 31
3.6.6 單晶鑽石與多晶鑽石場效電晶體之比較 33
3.7 功率和頻率半導體元件之性能評估 34
第四章、討論 64
4.1 薄膜製程分析 64
4.2 摻雜製程分析 65
4.3 蝕刻製程分析 65
4.4 二極體分析 66
4.5 電晶體分析 67
第五章、總結 69
參考文獻 71
參考文獻
[1] C. E. Nebel, “From Gemstone to Semiconductor”, Nature Materials, vol.2, pp.431-432, 2003
[2] B. J. Baliga, “Power Semiconductor Device Figure of Merit for High-Frequency Applications”, IEEE Electron Device Letters, vol.10, pp.455-457, 1989
[3] S. T. Lee, Y. Lifshitz, “The Road to Diamond Wafers”, Nature, vol.424, pp.500-501, 2003
[4] Shinichi Shikata, “Single Crystal Diamond Wafers for High Power Electronics”, Diamond & Related Materials, vol.65, pp.168–175, 2016
[5] P. Calvani, A. Corsaro, F. Sinisi, M. C. Rossi, G. Conte, E. Giovine, W. Ciccognani, E. Limiti, “Diamond MESFET Technology Development for Microwave Integrated Circuits”, European Microwave Integrated Circuits Conference , pp.149-151, 2009
[6] V. B. Efimov, L. P. Mezhov-Deglin, “Phonon Scattering in Diamond Films”, Physica B, vol.263-264, pp.745-748, 1999
[7] V. Goyal, D. Kotchetkov, S. Subrina, M. Rahman, A. A. Balandin, “Thermal Conduction Through Diamond-Silicon Heterostructures”, IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp.1-6, 2010
[8] M. Kasu, ”Diamond Epitaxy: Basics and Applications”, Crystal Growth and Characterization of Materials, vol.62, pp. 317–328, 2016
[9] R. M. Hazen, “The Diamond Makers”, Cambridge university, pp.61~77, 1991
71
[10] H. T. Hall, “Diamond Synthesis”, US2947608, 1960
[11] H. Sumiya, S. Satoh, “High-Pressure Synthesis of High-Purity Diamond
Crystal”, Diamond & Related Materials 5, pp.1359-1365, 1996
[12] B.V. Spitsyn, L.L. Bouilov and B.V. Derjaguin, “Vapor Growth of Diamond on Diamond and Other Surfaces”, Journal of Crystal Growth, vol.52,
pp.219-226, 1981
[13] P. W. May, “Diamond Thin Films: A 21st-Century Material”, Physical and
Engineering Sciences, vol.358, pp. 473-495, 2000
[14] X. Jiang , C. L. Jia, “Direct Local Epitaxy of Diamond on Si(100) and
Surface-Roughening-Induced Crystal Misorientation”, Physical Review
Letters, vol.84, pp. 3658-3661, 2000
[15] H. Toyota, S. Nomura, Y. Takahashi, S. Mukasa, “Submerged Synthesis of
Diamond in Liquid Alcohol Plasma”, Diamond & Related Materials, vol.17,
pp.1902–1904, 2008
[16] Y. Takahashi, H. Toyota, S. Nomura, S. Mukasa, T. Inoue, “A Comparison
of Diamond Growth Rate Using In-Liquid and Conventional Plasma Chemical Vapor Deposition Methods”, Journal of Applied Physics, vol.105, pp.1-4, 2009
[17] Y. Harada, R. Hishinuma, C. Terashima, H. Uetsuka, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, “Rapid Growth of Diamond and Its Morphology By In-Liquid Plasma CVD”, Diamond & Related Materials, vol.63, pp.12-16, 2016
[18] H. Yamada, A. Chayahara, Y. Mokuno, N. Tsubouchi, S. Shikata, N. Fujimori, “Developments of Elemental Technologies to Produce Inch-Size Single-Crystal Diamond Wafers”, Diamond & Related Materials, vol.20,
72
pp.616–619, 2011
[19] Y. Mokuno, A. Chayahara, Y. Soda, H. Yamada, Y. Horino, N. Fujimori,
“High Rate Homoepitaxial Growth of Diamond by Microwave Plasma CVD with Nitrogen Addition”, Diamond & Related Materials, vol.15, pp.455–459, 2006
[20] M. W. Geis, “Device Quality Diamond Substrates”, Diamond and Related Materials, vol.1, pp.684-687, 1992
[21] G. Janssen, L.J. Giling, ““Mosaic” Growth of Diamond”, Diamond and Related Materials, vol.4, pp.1025-1031, 1995
[22] Y. Mokuno, A. Chayahara, H. Yamada, “Synthesis of Large Single Crystal Diamond Plates by High Rate Homoepitaxial Growth Using Microwave Plasma CVD and Lift-off Process”, Diamond & Related Materials, vol.17, pp.415–418, 2008
[23] Y. Mokuno, A. Chayahara, H. Yamada, N. Tsubouchi, “Improving Purity and Size of Single-Crystal Diamond Plates Produced by High-Rate CVD Growth and Lift-off Process Using Ion Implantation”, Diamond & Related Materials, vol.18, pp.1258–1261, 2009
[24] R. A. Khmelnitskiy, “Prospects for The Synthesis of Large Single-Crystal Diamonds”, Physics-Uspekhi, vol.58, pp.134-149, 2015
[25] H. Yamada, A. Chayahara, Y. Mokuno, H. Umezawa, S. Shikata, N. Fujimori, “Fabrication of 1 Inch Mosaic Crystal Diamond Wafers”, Applied Physics Express, vol.3, pp.051301, 2010
[26] H. Yamada, A. Chayahara, Y. Mokuno, N. Tsubouchi, S. Shikata, “Uniform Growth and Repeatable Fabrication of Inch-Sized Wafers of A Single-Crystal Diamond”, Diamond & Related Materials, vol.33, pp.27–31,
73
2013
[27] H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, S. Shikata, "A 2-In. Mosaic
Wafer Made of A Single-Crystal Diamond", Applied Physics Letters, vol.104,
pp.1-4, 2014
[28] J. W. Glesener, “Hole Capture in Boron-Doped Diamond”, Applied Physics
Letters, vol.64, pp.217-219 , 1994
[29] E. Gheeraert, S. Koizumi, T. Teraji, H. Kanda, M. Nesladek, "Electronic
States of Boron and Phosphorus in Diamond", Physica Status Solidi (a),
vol.174, pp.39-51, 1999
[30] B. B. Li, M. C. Tosin, A. C. Peterlevitz, V. Baranauskas,"Measurement of
The Substitutional Nitrogen Activation Energy in Diamond Films", Applied
Physics Letters, vol.73, pp.812-814, 1998
[31] I. Bello, M. K. Fung, W. J. Zhang, K. H. Lai, Y. M. Wang, Z. F. Zhou, R.
K.W. Yu, C. S. Lee, S. T. Lee, "Effects at Reactive Ion Etching of CVD
Diamond", Thin Solid Films, vol.368, pp.222-226, 2000
[32] D. Liu, L. Gou, J. Xu, K. Gao, X. Kang, “Investigations on Etching
Resistance of Undoped and Boron Doped Polycrystalline Diamond Films by
Oxygen Plasma Etching”, Vacuum, vol.128, pp.80-84, 2016
[33] G. F. Ding, H. P. Mao, Y. L. Cai, Y. H. Zhang, X. Yao, X. L. Zhao, “Micromachining of CVD Diamond by RIE for MEMS Applications”,
Diamond & Related Materials, vol.14, pp.1543 – 1548, 2005
[34] O. Dorsch, M. Werner, E. Obermeier, “Dry Etching of Undoped and Boron Doped Polycrystalline Diamond Films”, Diamond & Related Materials,
vol.4, pp. 456-459, 1995
[35] H. Shiomi, "Reactive Ion Etching of Diamond in O2 and CF4 Plasma, and
74
Fabrication of Porous Diamond for Field Emitter Cathodes", Japanese
Journal of Applied Physics, vol.36, p.2207-2004, 1997
[36] Y. Andoa, Y. Nishibayashia, K. Kobashia, T. Hiraob, K. Ourab, “Smooth
and High-Rate Reactive Ion Etching of Diamond”, Diamond and Related
Materials, vol.11, pp.824–827, 2002
[37] T. Izak, A. Kromka, O. Babchenko, M. Ledinsky, K. Hruska, E. Verveniotis,
“Comparative Study on Dry Etching of Polycrystalline Diamond Thin
Films”, Vacuum, vol.86, pp.799-802, 2012
[38] Z. Cao, M. W. Varney, D. M. Aslam, “Optimization of Reactive Ion Etching
of Polycrystalline Diamond for MEMS Applications”, Journal of
Microelectromechanical Systems, vol.24, pp.1681-1683, 2015
[39] M. W. Geis, D. D. Rathman, D. J. Ehrlich, R. A. Murphy, W. T. Lindley, “High-Temperature Point-Contact Transistors and Schottky Diodes Formed on Synthetic Boron-Doped Diamond” , IEEE Electron Device Letters, vol.8,
pp.341-343,1981
[40] K. Okano, H. Kiyota, T. Iwasaki, Y. Nakamura, Y.Akiba. , T. Kurosu, M.
Iida,T. Nakamura, “Fabrication of A Diamond p-n Junction Diode Using The Chemical Vapour Deposition Technique”, Solid-State Electronics, vol.34, pp.139-141, 1991
[41] H. Shiomi, Y. Nishibayashi, N. Fujimori ,” High-Voltage Schottky Diodes on Boron-Doped Diamond Epitaxial Films”, Japanese Journal of Applied Physics, vol.29, 1990
[42] W. Ebert, “High current p/p-Diamond Schottky Diode”, IEEE Electron Device Letters, vol.15, pp. 289–291, 1994
[43] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. Kerns, Q. Zhou, “PECVD 75
Diamond-Based High Performance Power Diodes”, IEEE Transactions On
Power Electronics, vol.20, pp.1-9, 2005
[44] E. Kohn, A. Denisenko, “Concepts for Diamond Electronics”, Thin Solid
Films, vol.515, pp.4434-4439, 2006
[45] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstro ̈m, D. J. Twitchen, A. J.
Whitehead, S. E. Coe, G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond”, Science, vol. 297, pp.1670-1672, 2002
[46] A. Vescan, I. Daumiller, P. Gluche, W. Ebert, E. Kohn, “Very High Temperature Operation of Diamond Schottky Diode”, IEEE Electron Device Letters, vol.18, pp.556-558, 1997
[47] M. Brezeanu, “Diamond Schottky Structures”, International Semiconductor Conference, vol.1, pp.15-25, 2009
[48] M. Brezeanu, S. J. Rashid, T. Butler, N. L. Rupeswghe, F. Udrea, K. Okano, G. A. J. Amaratunga, D. J. Twitchen, A. Tajani, C. Wort, A. Garraway, L. Coubeck, P. Talyor, D. G. Hasko, “High Voltage Schottky Barrier Diodes IN Synthetic Single Crystal Diamond”, International Semiconductor Conference, vol.2, pp.385-388, 2004
[49] H. Umezawa, S. Shikata, “Diamond High-Temperature Power Devices”, International Symposium on Power Semiconductor Devices & IC′s, pp.259-262, 2009
[50] S. Kone, H. Ding, H. Schneider, K. Isoird, G. Civrac, “High Performances CVD Diamond Schottky Barrier Diode - Simulation and Carrying Out”, European Conference on Power Electronics and Applications, pp.1-8, 2009
[51] D. Eon, A. Traoré, J. Pernot, E. Gheeraert, “Recent Progress on Diamond 76
Schottky Diode”,International Symposium on Power Semiconductor
Devices & ICs, pp.55-58, 2016
[52] A. Traore, P. Muret, A. Fiori, D. Eon, E. Gheeraert, J. Pernot, “Zr/Oxidized
Diamond Interface for High Power Schottky Diodes”, Applied Physics
Letters, vol.104, pp.1-4, 2014
[53] T. Makino, H. Kato, N. Tokuda, M. Ogura, D. Takeuchi, K. Oyama, S.
Tanimoto, H. Okushi, S. Yamasaki, ” Diamond Schottky-pn Diode without Trade-off Relationship Between On-Resistance and Blocking Voltage”, Physica Status Solidi (a), vol.207, pp.2105–2109, 2010
[54] T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, S. Yamasaki, “Device Design of Diamond Schottky-pn Diode for Low-Loss Power Electronics”, Japanese Journal of Applied Physics, vol.51, pp.1-7, 2012
[55] T. Matsumoto, T. Mukose, T. Makino, D. Takeuchi, S. Yamasaki, T. Inokuma, N. Tokuda, “Diamond Schottky-pn Diode Using Lightly Nitrogen-Doped Layer”, Diamond & Related Materials, vol.75, pp.152–154, 2017
[56] M. Dutta, F.A.M. Koeck, R.J. Nemanich, S. Chowdhury, "P-I-N Diodes Enabled by Homoepitaxially Grown Phosphorus Doped Diamond With Breakdown Electric Field >1.25 MV/cm", Device Research Conference, pp.184-184, 2015
[57] M. Dutta, F. A. M. Koeck, R. Hathwar, S. M. Goodnick, R. J. Nemanich, S. Chowdhury, “Demonstration of Diamond-Based Schottky p-i-n Diode With Blocking Voltage > 500 V”, IEEE Elecron Device Letters, vol.37, pp.1170-1173, 2016
[58] M. Dutta, F. A. M. Koeck, W. Li, R. J. Nemanich, S. Chowdhury, “High 77
Voltage Diodes in Diamond Using (100)- and (111)- Substrates”, Elecron
Device Letters, vol.38, pp.600-603, 2017
[59] H. Umezawa, T. Matsumoto, S. Shikata, “Diamond Metal–Semiconductor
Field-Effect Transistor With Breakdown Voltage Over 1.5 kV ”, IEEE
Elecron Device Letters, vol.35, pp.1112-1114, 2014
[60] H. Shiomi, Y. Nishibayashi, N. Toda, S. Shikata, “Pulse-Doped Diamond
P-Channel Metal Semiconductor Field-Effect Transistor ”, IEEE Elecron
Device Letters, vol.16, pp.36-38,1995
[61] A. Vescan, P. Gluche, W. Ebert, and E. Kohn, “High-Temperature,
High-Voltage Operation of Pulse-Doped Diamond MESFET”, IEEE Elecron
Device Letters, vol.18, pp.222-224, 1997
[62] A. J. Tessmer, K. Das and D. L. Dreifus, “Polycrystalline Diamond
Field-Effect Transistors”, Diamond & Related Materials, vol.1, pp.89-92,
1992
[63] D. L. Dreifus, A. J. Tessmer, J. S. Holmes, C. Kao, D. M. Malta, L. S. Plano,
B. R. Stoner, "Diamond Field-Effect Transistors", High-Temperature
Electronics, pp.466-477, 1999
[64] L. Y. S. Pang, S. S. M. Chan, C. Johnston, P. R. Chalker, R. B. Jackman,
“High Temperature Polycrystalline Diamond Metal-Insulator- Semiconductor Field-Effect-Transistor”, Diamond & Related Materials, vol.6, pp.333-338, 1997
[65] K. Tsugawa, K. Kitatani, H. Noda, A. Hokazono, K. Hirose, M. Tajima, H. Kawarada, "High-Performance Diamond Surface-Channel Field-Effect Transistors and Their Operation Mechanism", Diamond & Related Materials, vol.8, pp.927-933, 1999
78
[66] F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, "Origin of Surface Conductivity in Diamond", Physical Review Letters, vol.85, pp.3472-3475, 2000
[67] H. Sato, M. Kasu, "Maximum Hole Concentration for Hydrogen-Terminated Diamond Surfaces With Various Surface Orientations Obtained by Exposure to Highly Concentrated NO2", Diamond & Related Materials, vol.31, pp.47–49, 2013
[68] H. Kawarada, M. Aoki, M. Ito, “Enhancement Mode Metal-Semiconductor Field Effect Transistors Using Homoepitaxial Diamonds”, Applied Physics Letters, vol.65, pp.1563-1565, 1994
[69] H. Kawarada, “Hydrogen-Terminated Diamond Surfaces and Interfaces”, Surface Science Reports, vol.26, pp.205-259, 1996
[70] H. Ishizaka, M. Tachiki, K. Song, H. Umezawa, H. Kawarada, “Cryogenic Operation of Surface-Channel Diamond Field-Effect Transistors”, Diamond & Related Materials, vol.12, pp.1800-1803, 2003
[71] H. Noda, A. Hokazono, H. Kawarada, “Device Modeling of High Performance Diamond MESFETs Using P-Type Surface Semiconductive Layers”, Diamond & Related Materials, vol.6, pp.865-868, 1997
[72] C. Verona, W. Ciccognani, S. Colangeli, F. D. Pietrantonio, E. Giovine, E. Limiti, M. Marinelli, G. Verona-Rinati, "Gate–Source Distance Scaling Effects in H-Terminated Diamond MESFETs", IEEE Transactions on Elelectron Devices, vol.62, pp.1150-1156, 2015
[73] H. J. Looi, L. Y. S. Pang, Y. Wang, M. D. Whitfield, R. B. Jackman, “Enhancement Mode Metal-SemiconductorField Effect Transistors from Thin-Film Polycrystalline Diamond”, IEEE Electron Device Letters, vol.19,
79
pp.112-114, 1998
[74] H. Umezawa, K. Tsugawa, S. Yamanaka, D. Takeuchi, H. Okushi, H.
Kawarada, ” High-Performance Diamond Metal-Semiconductor Field-Effect Transistor with 1 μm Gate Length”, Japanese Journal of Applied Physics, vol. 38, pp.1222–1224, 1999
[75] A. Aleksov, A. Denisenko, U. Spitzberg, T. Jenkins, W. Ebert, E. Kohn, "RF Performance of Surface Channel Diamond FETs With Sub-Micron Gate Length", Diamond & Related Materials, vol.11, pp.382–386, 2002
[76] Oliver A Williams, Richard B Jackman, "Surface Conductivity on Hydrogen Terminated Diamond", Semiconductor Science and Technology, Vol.18, pp.34-40, 2003
[77] P. Calvani, A. Corsaro, F. Sinisi, M.C. Rossi, G. Conte, S. Carta, E. Limiti, “Microwave Performance of Surface Channel Diamond MESFETs”, IEEE Nanotechnology Materials and Devices Conference, pp.200-204, 2009
[78] Y. Zhang, L. J. Wang, J. Huang, K. Tang, F. Zhang, Q. Fang, Q. Zeng, R. Xu, J. Zhang, J. Min, Y. Xia, "The Electrical Properties of The Diamond Field Effect Transistor", Asia Communications and Photonics conference and Exhibition, pp.1-6, 2009
[79] H. Taniuchi, H. Umezawa, T. Arima, M. Tachiki, H. Kawarada, “High-Frequency Performance of Diamond Field-Effect Transistor”, IEEE Electron Device Letters, vol.22, pp.390-392, 2001
[80] P. Calvani, A. Corsaro, M. Girolami, F. Sinisi, D.M. Trucchi, M.C. Rossi, G. Conte, S. Carta, E. Giovine, S. Lavanga, E. Limiti, V. Ralchenko, “DC and RF Performance of Surface Channel MESFETs on H-Terminated Polycrystalline Diamond”, Diamond & Related Materials, vol.18, pp.786–
80
788, 2009
[81] B. Pasciuto, W. Ciccognani, E. Limiti, P. Calvani, M. C. Rossi, G. Conte,
“Modeling of Metal-Semiconductor Field-Effect-Transistor on H-Terminated Polycrystalline Diamond”, International Conference on Ultimate Integration of Silicon, pp.261-264, 2009
[82] P. Calvani, G. Conte, D. Dominijanni, E. Giovine, B. Pasciuto, E. Limiti, “Hydrogen Terminated Diamond MESFETs: New Technology for RF Power Applications”, European Microwave Integrated Circuits Conference, pp.122-125, 2010
[83] D. A. J. Moran, D. A. MacLaren, S. Porro, H. McLelland, P. John, J. I. B. Wilson, "Processing of 50 nm Gate-Length Hydrogen Terminated Diamond FETs for High Frequency and High Power Applications", Microelectronic Engineering, vol.88, pp.2691–2693, 2011
[84] D. A. J. Moran, S. A. O. Russell, S. Sharabi, A. Tallaire, "High Frequency Hydrogen-Terminated Diamond Field Effect Transistor Technology", IEEE International Conference on Nanotechnology, pp.1-5, 2012
[85] V. Camarchia, F. Cappelluti, G. Ghione, E. Limiti, D. A. J. Moran, M. Pirola, “An Overview on Recent Developments in RF and Microwave Power H-Terminated Diamond MESFET Technology”, International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits, pp.1-6, 2014
[86] K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, S. E. Coe, ”Diamond FET Using High-Quality Polycrystalline Diamond With fT of 45 GHz and fmax of 120 GHz”, IEEE Eelctron Device Letters, vol.27, pp.570-572, 2006
[87] A. Hokazono, T. Ishikura, K. Nakamura, S. Yamashita, H. Kawarada, 81
“Enhancement/Depletion MESFETs of Diamond and Their Logic Circuits”, Diamond & Related Materials, vol.6, pp.339-343, 1997
[88] K. G. Crawford, “Enhanced Surface Transfer Doping of Diamond by V2O5
With Improved Thermal Stability,” Applied Physics Letters, vol.108, pp. 1–4,
2016
[89] C. Verona, W. Ciccognani, S. Colangeli, E. Limiti, M. Marinelli, G.
Verona-Rinati, D. Cannatà, M. Benetti, F. D. Pietrantonio, “V2O5 MISFETs on H-Terminated Diamond”, IEEE Transactions on Electron Devices, vol.63, pp.4647-4653, 2016
[90] M. Tordjman, C. Saguy, A. Bolker, R. Kalish, “Superior Surface Transfer Doping of Diamond With MoO3”, Advanced Materials Interfaces, vol.1, pp.1-6, 2014
[91] K. Hiramal, H. Takayanagil, S. Yamauchil, Y. Jingul, H. Umezawa, H. Kawaradal, “Diamond MISFETs Fabricated on High Quality Polycrystalline CVD Diamond”, International Symposium on Power Semiconductor Devices & ICs, pp.269-272, 2007
[92] M. Syamsul, Y. Kitabayashi, T. Kudo, D. Matsumura, H. Kawarada, “High Voltage Stress Induced in Transparent Polycrystalline Diamond Field-Effect Transistor and Enhanced Endurance Using Thick Al2O3 Passivation Layer”, IEEE Electron Device Letters, vol.38, pp.607-610, 2017
[93] K. Hirama, T. Koshiba, K. Yohara, H. Takayanagi, S. Yamauchi, M. Satoh, H. Kawarada, "RF diamond MISFETs Using Surface Accumulation Layer", International Symposium on Power Semiconductor Devices & IC′s, pp.1-4, 2006
[94] H. Kawarada, "High-Current Metal Oxide Semiconductor Field-Effect 82
Transistors on H-Terminated Diamond Surfaces and Their High-Frequency
Operation", Japanese Journal of Applied Physics, vol.51, pp.1-6, 2012
[95] S. A. O. Russell, S. Sharabi, A. Tallaire, D. A. J. Moran, "Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz", IEEE Electron Device Letters, vol.33, pp.1471-1473,
2012
[96] H. Matsudaira, S. Miyamoto, H. Ishizaka, H. Umezawa, H. Kawarada,
“Over 20-GHz Cutoff Frequency Submicrometer-Gate Diamond MISFETs”,
IEEE Electron Device Letters, VOL.25, pp.480-482, 2004
[97] K. Hirama, K. Tsuge, S. Sato, T. Tsuno, Y. Jingu, S. Yamauchi, H. Kawarada, “High-Performance P-Channel Diamond Metal–Oxide– Semiconductor Field-Effect Transistors on H-Terminated (111) Surface”,
Applied Physics Express, vol.3, pp.1-3, 2010
[98] T. Iwasaki, J. Yaita, H. Kato, T. Makino, M. Ogura, D. Takeuchi, H. Okushi,
S. Yamasaki, M. Hatano, “600 V Diamond Junction Field-Effect Transistors Operated at 200 °C”, IEEE Electron Device Letters, vol.35, pp.241-243, 2014
[99] T. Suwa, T. Iwasaki, K. Sato, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, M.Hatano, “Normally-Off Diamond Junction Field-Effect Transistors With Submicrometer Channel”, IEEE Electron Device Letters, vol.37, pp.209-211, 2016
[100] T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, T. Matsumoto, H. Okushi, S. Yamasaki, M. Hatano, ”Diamond Semiconductor JFETs by Selectively Grown n+-Diamond Side Gates for Next Generation Power Devices”, International Electron Devices Meeting,
83
pp.751-754, 2012
[101] Y. Hoshino, H. Kato, T. Makino, M. Ogura, T. Iwasaki, M. Hatano, S.
Yamasaki, ” Electrical Properties of Lateral p–n Junction Diodes Fabricated by Selective Growth of n+ Diamond”, Physica Status Solidi (a), vol.209, pp.1761–1764, 2012
[102] T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, S. Yamasaki, M. Hatano, “High-Temperature Operation of Diamond Junction Field-Effect Transistors With Lateral p-n Junctions”, IEEE Electron Device Letters, vol.34, pp.1175-1177, 2013
[103] T. Iwasaki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Y., M. Hatano, ” High-Temperature Bipolar-Mode Operation of Normally-Off Diamond JFET”, Electron Devices Society, vol.5, pp.95-99, 2017
[104] T. Iwasaki, H. Kato, J. Yaita, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, S. Yamasaki, M. Hatano, “Current Enhancement by Conductivity Modulation in Diamond JFETs for Next Generation Low-Loss Power Devices”, International Symposium on Power Semiconductor Devices & IC′s, pp.77-80, 2015
[105] J. J. Wang, Z. Z. He, C. Yu, X. B. Song, H. X. Wang, F. Lin, Z. H. Feng, "Comparison of Field-Effect Transistors on Polycrystalline and Single-Crystal Diamonds", Diamond & Related Materials, vol.70, pp.114– 117, 2016
[106] K. Hirama, H. Takayanagi, S. Yamauchi, J. H. Yang, H. Kawarada, H. Umezawa, "Spontaneous Polarization Model for Surface Orientation Dependence of Diamond Hole Accumulation Layer and Its Transistor Performance", Applied Physics Letters, vol.92, pp.1-3, 2008
84
[107] E. O. Johnson, “Physical Limitations on Frequency and Power Parameters of Transistors”, RCA Electronic Components and Devices Somerville, pp.27-34, 1965
[108] R. W. Keyes, “Figure of Merit for Semiconductors for High-Speed Switches”, Proc. IEEE, vol.60, pp.225, 1972
[109] B. J. Baliga, “Semiconductors for High-Voltage, Vertical Channel FET’s”, Journal of Applied Physics, vol.53, pp.1759-1764, 1982
[110] R. F. Davis, J. W. Palmoue, J. A. Edmond, "A Review of The Status of Diamond and Silicon Carbide Devices for High- Power, High-Temperature and-Frequency Applications", International Technical Digest on Electron Devices, pp.785-788,1990
[111] C. J. H. Wort, R. S. Balmer, “Diamond as An Electronic Material”, Materials Today, vol.11, pp.22-28, 2008
指導教授 李雄(Shyong Lee) 審核日期 2017-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明