博碩士論文 104323034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.148.104.9
姓名 鄭詔元(Chao-Yuan Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用金屬-半導體接面原理實現無光源下 製造N型多孔矽之研究
(Study of application of metal-semiconductor junction principle on the production of N-type porous silicon in the dark)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) ㄧ般而言,以電化學法製造N型多孔矽必須外加光源照射矽晶圓,以達電子-電洞對分離,產生電洞,才能進行蝕刻。另一方面,在近期研究指出使用外加電場、磁場或是P-N接面方式可暗室製造N型多孔矽。本研究應用金屬-半導體接面原理,以銅片電極為金屬端,N-Type矽晶圓為半導體端,在順向偏壓下使空間電荷區變薄,使得電子-電洞對分離,實現不以任何光源輔助即可蝕刻出N型多孔矽。另外,研究中發現使用1064nm雷射輔助蝕刻,發現能使多孔矽表面以及光激發光現象更為均勻。
摘要(英) In general, N-type Si must be illuminated in order to drive electrochemical etching, light generates electron-hole pairs. On the other hand, there are there novel methods to assist hole generation and enhance the growth porous silicon on n-type silicon in the dark, respectively, added electric field, magnetic field, P-N junction. This study is based on the principle of metal-semiconductor junction, the copper electrode is the metal side, the N-Type silicon wafer is the semiconductor side, and the space charge region is thinned under the forward bias,
so that the electron-hole pairs are separated, to achieve without any auxiliary light source can be etched N-type porous silicon. In addition, the study found that the use of 1064nm laser-assisted etching, porous silicon surface and the phenomenon of light excitation can be more uniform.
關鍵字(中) ★ N型多孔矽
★ 金屬-半導體接面
★ 電化學蝕刻
★ 順向偏壓
★ 光激發光
★ 暗室
關鍵字(英) ★ N-type porous silicon
★ metal-semiconductor junction
★ electrochemical etching
★ forward bias
★ photoluminescence
★ in the dark
論文目次
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1-1研究背景 1
1-2多孔矽製程 3
1-2-1乾式蝕刻法(Dry etching) 3
1-2-2濕式蝕刻法(Wet etching) 4
1-2-3電化學蝕刻法(Electrochemical Etching) 5
1-3多孔矽應用 6
1-4研究動機 10
第二章 原理與文獻回顧 12
2-1 多孔矽理論模型 12
2-1-1量子模型(The Quantrm Model) 12
2-1-2 Rate模型(The Rate Model) 13
2-1-3 擴散限制模型(The Diffusion-Limited Model) 14
2-1-4 貝爾模型(The Beale Model) 15
2-2多孔矽形成機制 16
2-2-1多孔矽電化學反應裝置 16
2-2-2多孔矽成型的溶解機制 17
2-2-3矽在電解液中的電流-電壓曲線(I-V Curve) 19
2-3金屬-半導體接面理論 22
2-3-1金屬-N-Type半導體接觸 22
2-3-2金屬-N-Type半導體之電壓電流關係 24
2-4半導體-電解液接觸 29
2-4-1 N-Type半導體的光效應 31
第三章 實驗方法與步驟 33
3-1試片選擇與清洗 33
3-2實驗器材 34
3-2-1 雷射光源、偏振片與雷射功率計 34
3-2-2 電化學蝕刻系統 36
3-3實驗步驟 37
3-3-1暗室化學蝕刻 (Electrochemical in dark) 37
3-3-2光電化學蝕刻 (Photoelectrochemical) 38
3-4實驗分析儀器 41
3-4-1場發射掃描式電子顯微鏡 (FE-SEM) 41
3-4-2光激發光頻譜 (Photoluminescence, PL) 42
3-4-3高強度紫外燈 (High intensity UV lamps) 43
第四章 結果與討論 44
4-1暗室電化學蝕刻實驗試片 44
4-1-1直接觀察試片表面及UV照射觀察 44
4-1-2 FE-SEM觀察多孔矽表面與剖面形貌 47
4-2光電化學蝕刻實驗試片 55
4-2-1直接觀察試片表面及UV照射觀察 55
4-2-2 FE-SEM觀察多孔矽表面與剖面形貌 60
4-3蝕刻速率 69
4-4多孔矽之光激發光光譜(PL)強度 72
4-5 N-Type多孔矽成型討論 77
4-6驗證金屬-N-Type半導體接面對於電化學蝕刻的影響 81
4-6-1 鍍銅膜之矽試片PL比較 89
第五章 結論 92
第六章 參考文獻 94
參考文獻 [1] A. Uhlir, "Electrolytic shaping of germanium and silicon," Bell System Technical Journal, vol. 35, pp. 333-347, 1956.
[2] L. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Applied Physics Letters, vol. 57, pp. 1046-1048, 1990.
[3] I. Sagnes, A. Halimaoui, G. Vincent, and P. Badoz, "Optical absorption evidence of a quantum size effect in porous silicon," Applied physics letters, vol. 62, pp. 1155-1157, 1993.
[4] V. Lehmann and U. Gösele, "Porous silicon formation: a quantum wire effect," Applied Physics Letters, vol. 58, pp. 856-858, 1991.
[5] Volker Lehmann and U. Gösele, " Advanced materials 4(2), pp. 114 (1992)
[6] Z. Gaburro, N. Daldosso, and L. Pavesi, "Porous silicon," Encyclopedia of Condensed Matter Physics, pp. 391-401, 2005.
[7] K.-J. Chen, "The study of porous silicon thin-film transfer," 2011.
[8] M. Hajj-Hassan, M. Cheung, and V. P. Chodavarapu, "Ultra-thin porous silicon membranes fabricated using dry etching," Micro & Nano Letters, vol. 6, pp. 226-228, 2011.
[9] J. Bannard, "Electrochemical machining, "J. Appl. ,Electrochem. , vol. 7, pp. 1-29,1977.
[10] O. Bisi, S. Ossicini, and L. Pavesi, "Porous silicon: a quantum sponge structure for silicon based optoelectronics," Surface science reports, vol. 38, pp. 1-126, 2000.
[11] P. Kumar and P. Huber, "Effect of etching parameter on pore size and porosity of electrochemically formed nanoporous silicon,"Journal of Nanomaterials, vol. 2007, 2007.
[12] M. Lannoo, C. Delerue, and G. Allan, "Screening in semiconductor nanocrystallites and its consequences for porous silicon," Physical review letters, vol. 74, pp. 3415, 1995.
[13] S. Stolyarova, S. Cherian, R. Raiteri, J. Zeravik, P. Skládal, and Y. Nemirovsky, "Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing," Sensors and Actuators B: Chemical, vol. 131, pp. 509-515, 2008.
[14] L. Canham, T. Cox, A. Loni, and A. Simons, "Progress towards silicon optoelectronics using porous silicon technology," Applied surface science, vol. 102, pp. 436-441, 1996.
[15] S. Strehlke, D. Sarti, A. Krotkus, K. Grigoras, and C. Lévy- Clément, "The porous silicon emitter concept applied to multicrystalline silicon solar cells," Thin Solid Films, vol. 297, pp. 291-295, 1997.
[16] C.-C. Tu, Y.-N. Chou, H.-C. Hung, J. Wu, S. Jiang, and L. Y. Lin, "Fluorescent porous silicon biological probes with high quantum efficiency and stability," Optics express, vol. 22, pp. 29996-30003, 2014.
[17] A. M. Alwan and A. A. Jabbar, "Design and fabrication of nanostructures silicon photodiode," Modern Applied Science, vol. 5, pp106, 2011.
[18] J. Lasky, S. Stiffler, F. White, and J. Abernathey, "Silicon-on-insulator (SOI) by bonding and etch-back," in Electron Devices Meeting, 1985 International, pp. 684-687, 1985.
[19] J. B. Kuo and K.-W. Su, CMOS VLSI engineering: silicon-on-insulator (SOI): Springer Science & Business Media, 2013.
[20] G. Celler and S. Cristoloveanu, "Frontiers of silicon-on-insulator," Journal of Applied Physics, vol. 93, pp. 4955-4978, 2003.
[21] M. Bruel, "Process for the production of thin semiconductor material films," U.S. Patent No. 5374564, 1994
[22] T. Yonehara and K. Sakaguchi, "Eltran®, Novel SOI Wafer Technology," JSAP International, vol. 4, pp. 10-16, 2001.
[23] V. Lehmann, "The Physics of Macropore Formation in Low Doped n‐Type Silicon," Journal of the Electrochemical Society, vol. 140, pp. 2836-2843, 1993.
[24] V. P. Parkhutik, J. M. Albella, J. M. Martinez-Duart, J. M. Gomez-Rodriguez, A. M. Baro, and V. I. Shershulsky, “Different types of pore sstructure in porous silicon,” Appl. Phys. Letter, vol.62, p.366, 1993.
[25] R. Smith and S. Collins, "Porous silicon formation mechanisms," Journal of Applied Physics, vol. 71, pp. R1-R22, 1992.
[26] M. Beale, J. Benjamin, M. Uren, N. Chew, and A. Cullis, "An experimental and theoretical study of the formation and microstructure of porous silicon," Journal of Crystal Growth, vol. 73, pp. 622-636, 1985.
[27] M. Marso, M. Berger, M. Thönissen, H. Lüth, and H. Münder, "An extended quantum model for porous silicon formation," Journal of the Electrochemical Society, vol. 142, pp. 615-620, 1995.
[28] J. B. Scott, "The Nobel Peace Prize," ed: JSTOR, pp. 562-563, 1921.
[29] T. Witten Jr and L. M. Sander, "Diffusion-limited aggregation, a kinetic critical phenomenon," Physical review letters, vol. 47, pp. 1400, 1981.
[30] T. Witten Jr and L. M. Sander, "Diffusion-limited aggregation, a kinetic critical phenomenon," Physical review letters, vol. 47, pp. 1400, 1981.
[31] M.J. Sailor, "Porous silicon in practice: preparation, characterization and applications" ,WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012.
[32] T. Unagami, "Formation mechanism of porous silicon layer by anodization in HF solution," Journal of the electrochemical society, vol. 127, pp. 476-483, 1980.
[33] X. Zhang, "Mechanism of Pore Formation on n‐Type Silicon, "Journal of the Electrochemical Society, vol. 138, pp. 3750-3756, 1991.
[34] X. Zhang, S. Collins, and R. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution, "Journal of the Electrochemical Society, vol. 136, pp. 1561-1565, 1989.
[35] V. Lehmann, W. Hönlein, H. Reisinger, A. Spitzer, H. Wendt, and J. Willer, "A novel capacitor technology based on porous silicon," Thin Solid Films, vol. 276, pp. 138-142, 1996.
[36] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, Clarendon Press. Oxford ,1998.
[37] J. Bardeen, "Surface States and Rectification at a Metal Semi-Conductor Contact," Physical Review, 71, 717, 1947.
[38] C.R. Crowell, S. M. Sze, “Current transport in metal-semiconductor barriers”, Solid-State Electronics, vol. 9, pp. 1035-1048, 1966
[39] Properties of Porous Silicon, Leigh Canham, Dera, Malvern.
[40] A. A. Yaron, S. Bastide, J. L. Maurice, and C. L. Clement, "Morphology of porous n-type silicon obtained by photoelectrochemical etching II", J. Lumin. 57, 67, 1993.
[41] M. J. Eddowes, J. Electroanal. Chem. Interfacial Electrochem. 280, 297, 1990.
[42] J. C. Lin, P. W. Lee, W. C. Tsai, Appl. Phys. Lett. 2006, 89, 121119.
[43] J. C. Lin, W. C. Tsai, W. L. Chen, Appl. Phys. Lett. 2007, 90, 091117.
[44] Shi Qiang Li, T. L. Sudesh L. Wijesinghe, and Daniel J. Blackwood, "Phoyoluminscent n-Type Porous Silicon Fabricated in the dark," Advanced Materials, vol. 20, pp. 3165-3168, 2008.
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2017-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明