博碩士論文 104323050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.234.214.113
姓名 雷以兆(I-Chao Lei)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 裝置於微流體晶片上的環狀超聲波共振壓電片套用於微流體技術與質譜儀分析之間的介面應用
(Piezo-Ring-on-Chip Microfluidics Device for Mass Spectrometry Interfacing)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 矽奈米結構對於質譜離子化效率探討之研究
★ 微滾軋製程應用於高分子材料轉印微結構之研究★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
★ 利用熱壓製造類多孔隙介質之 微流道模型研究★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
★ 微流道中液滴成形及滴落現象之模擬分析★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究
★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用★ 應用磁性粒子於微流體裝置之可逆接合
★ 運用慣性感測器於遠距復健之偵測與診斷★ Fabrication of 2.5D Micromodel for Air-Liquid Interaction Experiment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-6-30以後開放)
摘要(中) 作為一個用於微流體技術與質譜儀分析的介面,該技術必須要能夠適用於現存已有的微流體晶片,使用外接式的裝置能夠在不改變微流體晶片本身的設計的情況下輕易地套用於微流體晶片上,在本研究中我們使用低成本的環狀超聲波共振壓電片達成直接從微流體晶片噴灑出樣本的結果,並且作為微流體晶片與質譜儀分析之間的介面儀器。我們設計了一個挟持器於微流體晶片的末端,使得微流體晶片能夠挟持住環狀超聲波共振壓電片並且在不需要任何媒介,如:毛細管,的情況下就能將樣本由微流體晶片的末端向外噴灑,液體樣本於微流體晶片出口端的擴散情形以及環狀超聲波共振壓電片間歇性的噴灑情形皆受到觀察與分析,為了能夠進一步的分析環狀超聲波共振壓電片對微流體晶片上的微流道的流場影響我們加入了流場可視化粒子,於質譜儀分析之前我們先使用了基質(matrix) 作為樣本噴灑與樣本沉積的測試,後續我們展示了胜肽樣本的質譜儀分析,並且比較藉由環狀超聲波共振壓電片噴灑與傳統的滴定管移液沉積之胜肽樣本於質譜儀下的訊號強度以及均勻度,藉由環狀超聲波共振壓電片噴灑之胜肽樣本的結果顯示低使用量以及高均勻性的優點。
摘要(英) The interfacing methods for microfluidics to mass spectrometry should be compatible for the microfluidic chips that are already in use. An external interfacing device can be easily applied to the microfluidic chips without changing the original designs on the chips. In this study, we achieved the spray from chip by introducing a ring-shaped piezoelectric acoustic atomizer (piezo-ring), which is commercially available and low-cost, and used it as the microfluidic to MALDI – MS interfacing device. We designed a holder pattern at the outlet of the PDMS chip, making the chip be able to mount the piezo-ring and directly spray samples from the outlet without any intermedium such as capillaries. The sample spreading issue on the fluidic outlet surface was discussed and the pulsatile spraying behavior of piezo-ring was observed as well. We also added the visualize particles into the microchannel for the further evaluation of pumping effects to the microchannel by piezo-ring actuation. The deposition process of matrix was obtained before the MS analysis. The MS signals of peptides were then demonstrated by mass spectrometry and we compared the signal intensity of peptides by piezo-ring with traditional pipetting method. The low use of sample volume and uniform signal intensity were achieved by the piezo-ring-on-chip device.
關鍵字(中) ★ 微流體
★ 質譜儀
★ 介面
關鍵字(英) ★ microfluidic
★ MALDI - MS
★ interfacing
論文目次 Chinese abstract................................i
English abstract................................ii
Acknowledgements................................iii
Table of Contents...............................iv
List of Figures.................................v
1 Introduction............................1
2 Experiment..............................7
2.1 Materials and Equipments..................7
2.1.1 Materials................................7
2.1.2 Equipments...............................8
2.2 Experiment setup and procedures.........9
2.3 Piezo ring actuation....................10
2.4 Matrix and peptide sample preparation...11
2.5 Mass spectrometry analysis..............12
3 Results and Discussion..................13
3.1 Piezo ring performance..................13
3.2 Piezo-ring spraying on microfluidic platform........................................28
3.3 Pulsatile flow pumping effects in the microfluidic channel............................20
3.4 Piezo-ring spraying on MS target plate..23
3.5 Mass spectrometry analysis..............28
4 Conclusion..............................34
References......................................36
Supporting Information..........................40
參考文獻
[1] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, ”Micro total analysis systems. 1. Introduction, theory, and technology,” Analytical Chemistry, vol. 74, pp. 2623-2636, Jun 15 2002.
[2] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, ”Micro total analysis systems. 2. Analytical standard operations and applications,” Analytical Chemistry, vol. 74, pp. 2637-2652, Jun 15 2002.
[3] C. A. Baker, C. T. Duong, A. Grimley, and M. G. Roper, ”Recent advances in microfluidic detection systems,” Bioanalysis, vol. 1, pp. 967-975, Aug 2009.
[4] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, ”Electrospray Ionization for Mass-Spectrometry of Large Biomolecules,” Science, vol. 246, pp. 64-71, Oct 6 1989.
[5] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, ”Electrospray Ionization-Principles and Practice,” Mass Spectrometry Reviews, vol. 9, pp. 37-70, Jan 1990.
[6] R. S. Ramsey and J. M. Ramsey, ”Generating electrospray from microchip devices using electroosmotic pumping,” Analytical Chemistry, vol. 69, pp. 1174-1178, Mar 15 1997.
[7] J. Ji, L. Nie, L. Qiao, Y. X. Li, L. P. Guo, B. H. Liu, et al., ”Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry,” Lab on a Chip, vol. 12, pp. 2625-2629, 2012.
[8] T. Rob, P. K. Gill, D. Golemi-Kotra, and D. J. Wilson, ”An electrospray ms-coupled microfluidic device for sub-second hydrogen/deuterium exchange pulse-labelling reveals allosteric effects in enzyme inhibition,” Lab on a Chip, vol. 13, pp. 2528-2532, 2013.
[9] L. Mats, G. T. T. Gibson, and R. D. Oleschuk, ”Plastic LC/MS microchip with an embedded microstructured fibre having the dual role of a frit and a nanoelectrospray emitter,” Microfluidics and Nanofluidics, vol. 16, pp. 73-81, Jan 2014.
[10] N. H. Bings, C. Wang, C. D. Skinner, C. L. Colyer, P. Thibault, and D. J. Harrison, ”Microfluidic Devices Connected to Fused-Silica Capillaries with Minimal Dead Volume,” Analytical Chemistry, vol. 71, pp. 3292-3296, 1999/08/01 1999.
[11] S. Fritzsche, S. Ohla, P. Glaser, D. S. Giera, M. Sickert, C. Schneider, et al., ”Asymmetric Organocatalysis and Analysis on a Single Microfluidic Nanospray Chip,” Angewandte Chemie-International Edition, vol. 50, pp. 9467-9470, 2011.
[12] P. Hoffmann, U. Hausig, P. Schulze, and D. Belder, ”Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer,” Angewandte Chemie-International Edition, vol. 46, pp. 4913-4916, 2007.
[13] J. S. Mellors, W. A. Black, A. G. Chambers, J. A. Starkey, N. A. Lacher, and J. M. Ramsey, ”Hybrid Capillary/Microfluidic System for Comprehensive Online Liquid Chromatography-Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry,” Analytical Chemistry, vol. 85, pp. 4100-4106, Apr 16 2013.
[14] J. S. Mellors, V. Gorbounov, R. S. Ramsey, and J. M. Ramsey, ”Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry,” Analytical Chemistry, vol. 80, pp. 6881-6887, Sep 15 2008.
[15] X. Qian, J. Xu, C. L. Yu, Y. Chen, Q. Yu, K. Ni, et al., ”A Reliable and Simple Method for Fabricating a Poly(Dimethylsiloxane) Electrospray Ionization Chip with a Corner-Integrated Emitter,” Sensors, vol. 15, pp. 8931-8944, Apr 2015.
[16] N. Nordman, T. Sikanen, S. Aura, S. Tuomikoski, K. Vuorensola, T. Kotiaho, et al., ”Feasibility of SU-8-based capillary electrophoresis-electrospray ionization mass spectrometry microfluidic chips for the analysis of human cell lysates,” Electrophoresis, vol. 31, pp. 3745-3753, Nov 2010.
[17] N. Nordman, T. Sikanen, M. E. Moilanen, S. Aura, T. Kotiaho, S. Franssila, et al., ”Rapid and sensitive drug metabolism studies by SU-8 microchip capillary electrophoresis-electrospray ionization mass spectrometry,” Journal of Chromatography A, vol. 1218, pp. 739-745, Feb 4 2011.
[18] M. Schilling, W. Nigge, A. Rudzinski, A. Neyer, and R. Hergenroder, ”A new on-chip ESI nozzle for coupling of MS with microfluidic devices,” Lab on a Chip, vol. 4, pp. 220-224, 2004.
[19] X. F. Sun, R. T. Kelly, K. Q. Tang, and R. D. Smith, ”Ultrasensitive nanoelectrospray ionization-mass spectrometry using poly(dimethylsiloxane) microchips with monolithically integrated emitters,” Analyst, vol. 135, pp. 2296-2302, 2010.
[20] X. F. Sun, R. T. Kelly, K. Q. Tang, and R. D. Smith, ”Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry,” Analytical Chemistry, vol. 83, pp. 5797-5803, Jul 15 2011.
[21] Y. X. Wang, J. W. Cooper, C. S. Lee, and D. L. DeVoe, ”Efficient electrospray ionization from polymer microchannels using integrated hydrophobic membranes,” Lab on a Chip, vol. 4, pp. 363-367, 2004.
[22] Q. F. Xue, F. Foret, Y. M. Dunayevskiy, P. M. Zavracky, N. E. McGruer, and B. L. Karger, ”Multichannel microchip electrospray mass spectrometry,” Analytical Chemistry, vol. 69, pp. 426-430, Feb 1 1997.
[23] N. G. Batz, J. S. Mellors, J. P. Alarie, and J. M. Ramsey, ”Chemical Vapor Deposition of Aminopropyl Silanes in Microfluidic Channels for Highly Efficient Microchip Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry,” Analytical Chemistry, vol. 86, pp. 3493-3500, 2014/04/01 2014.
[24] M. Karas and R. Kruger, ”Ion formation in MALDI: The cluster ionization mechanism,” Chemical Reviews, vol. 103, pp. 427-439, Feb 2003.
[25] J. Lee, S. A. Soper, and K. K. Murray, ”A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 25, pp. 693-699, Mar 30 2011.
[26] C. W. Tsao, S. Tao, C. F. Chen, J. K. Liu, and D. L. DeVoe, ”Interfacing microfluidics to LDI-MS by automatic robotic spotting,” Microfluidics and Nanofluidics, vol. 8, pp. 777-787, Jun 2010.
[27] J. Gorbatsova, M. Borissova, and M. Kaljurand, ”Electrowetting on dielectric actuation of droplets with capillary electrophoretic zones for MALDI mass spectrometric analysis,” Electrophoresis, vol. 33, pp. 2682-2688, Sep 2012.
[28] H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, ”An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS,” Lab on a Chip, vol. 6, pp. 1213-1219, 2006.
[29] D. Chatterjee, A. J. Ytterberg, S. U. Son, J. A. Loo, and R. L. Garrell, ”Integration of Protein Processing Steps on a Droplet Microfluidics Platform for MALDI-MS Analysis,” Analytical Chemistry, vol. 82, pp. 2095-2101, Mar 1 2010.
[30] F. Pereira, X. Z. Niu, and A. J. deMello, ”A Nano LC-MALDI Mass Spectrometry Droplet Interface for the Analysis of Complex Protein Samples,” Plos One, vol. 8, May 9 2013.
[31] M. Zhong, C. Y. Lee, C. A. Croushore, and J. V. Sweedler, ”Label-free quantitation of peptide release from neurons in a microfluidic device with mass spectrometry imaging,” Lab on a Chip, vol. 12, pp. 2037-2045, 2012.
[32] S. J. Wang, S. M. Chen, J. N. Wang, P. Xu, Y. M. Luo, Z. X. Nie, et al., ”Interface solution isoelectric focusing with in situ MALDI-TOF mass spectrometry,” Electrophoresis, vol. 35, pp. 2528-2533, Sep 2014.
[33] I. M. Lazar and J. L. Kabulski, ”Microfluidic LC device with orthogonal sample extraction for on-chip MALDI-MS detection,” Lab on a Chip, vol. 13, pp. 2055-2065, 2013.
[34] Y. J. Guo, A. P. Dennison, Y. Li, J. Luo, X. T. Zu, C. L. Mackay, et al., ”Nebulization of water/glycerol droplets generated by ZnO/Si surface acoustic wave devices,” Microfluidics and Nanofluidics, vol. 19, pp. 273-282, Aug 2015.
[35] S. K. R. S. Sankaranarayanan and V. R. Bhethanabotla, ”Design of efficient focused surface acoustic wave devices for potential microfluidic applications,” Journal of Applied Physics, vol. 103, Mar 15 2008.
[36] S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, ”Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Analytical Chemistry, vol. 82, pp. 3985-3989, May 15 2010.
[37] L. Bllaci, S. Kjellstrom, L. Eliasson, J. R. Friend, L. Y. Yeo, and S. Nilsson, ”Fast Surface Acoustic Wave-Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Cell Response from Islets of Langerhans,” Analytical Chemistry, vol. 85, pp. 2623-2629, Mar 5 2013.
[38] J. Ho, M. K. Tan, D. B. Go, L. Y. Yeo, J. R. Friend, and H. C. Chang, ”Paper-Based Microfluidic Surface Acoustic Wave Sample Delivery and Ionization Source for Rapid and Sensitive Ambient Mass Spectrometry,” Analytical Chemistry, vol. 83, pp. 3260-3266, May 1 2011.
[39] H. S. Chen, T. Rejtar, V. Andreev, E. Moskovets, B. L. Karger, ”High-speed, high-resolution monolithic capillary LC-MALDI MS using an off-line continuous deposition interface for proteomic analysis,” Analytical Chemistry, vol. 77, pp. 2323-2331, Apr 15 2005.
[40] H. K. Musyimi, J. Guy, D. A. Narcisse, S. A. Soper, K. K. Murray, ” Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet,” Electrophoresis, vol. 26, pp. 4703-4710, Dec 2005.
[41] F. Basile, G. E. Kassalainen, S. K. R. Williams, ”Interface for direct and continuous sample-matrix deposition onto a MALDI probe for polymer analysis by thermal field flow fractionation and off-line MALDI-MS,” Analytical Chemistry, vol. 77, pp. 3008-3012, May1 2005.
[42] J. B. Young, L. Li, ”An impulse-driven liquid-droplet deposition interface for combining LC with MALDI MS and MS/MS,” Journal of the American Society for Mass Spectrometry, vol. 17, pp. 325-334, Mar 2006.
[43] J. B. Young, L. Li, ”Impulse-driven heated-droplet deposition interface for capillary and microbore LC-MALDI MS and MS/MS,” Analytical Chemistry, vol. 79, pp. 5927-5934, Aug 1 2007.
[44] J. Lee, H. K. Musyimi, S. A. Soper, K. K. Murray, ”Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS,” Journal of the American Society for Mass Spectrometry, vol. 19, pp. 964-972, Jul 2008.
[45] Cooley, Patrick W. Wallace, David B. Antohe, Bogdan V. , ” Applications of ink-jet printing technology to BioMEMS and microfluidic systems,” Proceedings, SPIE Conference on Microfluidics and BioMEMS, vol. 4560, pp. 177-188, Oct 2001.
[46] S. Song, S. Kim, C. S. Kim, P. Kang, B. Ku, ”Multi-chamber actuated micro-dispensing with a single nozzle for sub-nanoliter droplet formation,” Journal of Micromechanics and Microengineering, vol. 24, pp. 1-9, May 2014.
[47] J. Bergkvist, T. Lilliehorn, J. Nilsson, S. Johansson, T. Laurell, ”Miniaturized flowthrough microdispenser with piezoceramic tripod actuation,” Journal of Microelectromechanical Systems, vol. 14, pp. 134-140, Feb 2005.
[48] H. L. Tsai, W. S. Hwang, J. K. Wang, W. C. Peng, S. H. Chen, ” Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids,” Materials, vol. 8, pp. 7006-7016, Oct 2015.
[49] X. Zhong S. Lam, ”Perpetual-operation Frequency Response and Equivalent Circuit Modelling of Piezoelectric Ultrasonic Atomizer Devices,” IEEE International Ultrasonics Symposium Proceedings,pp.1-4, 21-24 Oct. 2015.
[50] Andrew McHutchon,”RLC Resonant Circuits,” pp.1-7, Apr 20 2013.
[51] Fabricio G. Baptista *, Danilo E. Budoya, Vinicius A. D. de Almeida and Jose Alfredo C. Ulson,” An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring,” Sensors,vol. 14, pp. 1208-1227, 2014.
[52] Y. N. Xia and G. M. Whitesides, ”Soft lithography,” Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.
指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2017-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明