博碩士論文 104323055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.215.182.36
姓名 黃正毅(Cheng-Yi Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM))
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
★ 應用磁性粒子於微流體裝置之可逆接合★ 運用慣性感測器於遠距復健之偵測與診斷
★ 裝置於微流體晶片上的環狀超聲波共振壓電片套用於微流體技術與質譜儀分析之間的介面應用★ Fabrication of 2.5D Micromodel for Air-Liquid Interaction Experiment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著電腦科學的進步基於影像分析的液滴分選系統隨之發展,影像分析是最直觀的觀測手段,藉由圖像的輪廓、大小、形狀、透光度等性質的差異,即可判斷出是否含有目標,且不須添加任何的額外物質,這有助於生物方面的研究,讓細胞在最不受干擾的環境下可以被單獨的觀察。為了實現這個技術,本論文藉助了一套SVM機器學習的影像分類系統,嘗試開發一套不需標記的影像分選系統。
在此系統中,液滴形成並自然的包封7微米的微珠,接著在液滴流動過程中再通入連續相溶液控制液滴的間距以符合系統的要求,最後由分選系統將含有微珠的液滴挑選出來。為了更進一步的研究這個系統,本論文將液滴分選系統分為三階段討論,第一階段目標為形成穩定的液滴並觀測在不同的三個壓力參數下所得的液滴大小、生成頻率、間距等關鍵參數,最後由實驗我們推導出可用於第三階段的壓力組合區域。第二階段則是觀察7微米微珠的包封狀況,在實驗中我們驗證其物理原理並由實驗獲得一估算方式 (eq. 4.2.4),估算含有不同數量微珠的液滴的出現機率,這有助於得到單顆粒的液滴。而第三部分我們結合影像分析系統,對於SVM機器學習的影像分析系統,我們首先使用10000顆液滴來訓練並驗證分類模型的準確度,若學習完成則結合微流晶片並觀測其分選準確度,由實驗我們確信我們的系統已具有初步判斷液滴是否含有微珠的功能,並達到每秒鐘約50顆液滴的分選速率以及95%的系統準確度和100%分選準確度。此外我們也即將完成多類分選模型的訓練,目前其系統準確率依所使用的分類模式已達97.5% 和97.73%。
摘要(英) As the computer science progressing, image processing based droplet sorting system has been reported. Image processing is the most direct method of observation. It can detect target by target contour, size, shape, transmittance, etc. It is helpful for biological research because cells can be separated without any treatment. In this thesis, we integrate an image classification system with (support vector machine) SVM machine learning and an electric droplet sorter to try to develop a new droplet sorting technology, label-free image sorting system.
In this system, droplets are formed and naturally encapsulate micro particles. Then, continuous fluid is injected to fit system requirement by controlling droplet condition like droplet separation. Finally, the system sort droplets with particles out.
To further study this system, we divide the droplet sorting system into 3 stages. In the first stage, we aim to stably generate monodisperse droplets and observe some critical parameters like droplet generation frequency, and droplet separation. From this experiment, we get the pressure combination that can be used in the third stage, droplet sorting system.
The second stage is to observe the encapsulation of 7 μm particles. In the experiment, we verify its physical principle and get an estimate equation (eq. 4.2.4). This equation estimates the probability of occurrence of droplets containing different numbers of particles and help for getting droplet with single particle.
In the third stage, we study a droplet sorting system. For SVM machine learning image detection system, we first train this classification model and verify its accuracy. If its learning process is successful, the system is integrated to sorter and test system accuracy. From our experiment, we believe our system already has ability to identify droplet with or without particles and classify at a rate of 50 droplets per second. We also find the system accuracy and sorting accuracy are up to 95% and 100%, respectively. In addition, we are training the multi-classification model to find out single particle droplets. The system accuracy has reached 97.5% and 97.73% depends on strategy.
關鍵字(中) ★ 液滴分選
★ 機器學習
★ 液滴
★ 晶片實驗室
關鍵字(英) ★ Droplet sorting
★ Machine learning
★ Droplet based microfluidic
★ Lab-on-a-chip
論文目次 摘要 VI
ABSTRACT VII
ACKNOWLEDGEMENT IX
TABLE OF CONTENT X
LIST OF FIGURES XII
LIST OF TABLE XIII
1. INTRODUCTION 1
1.1. Background 1
1.2. Objective and scope 2
1.3. Organization 3
2. LITERATURE REVIEW 4
2.1. Active droplet sorting 4
2.1.1. Electric sorter 4
2.1.2. Acoustic sorter 7
2.1.3. Pneumatic sorter 9
2.1.4. Magnetic sorter 11
2.1.5. Conclusion 12
2.2. Droplet detection 13
2.2.1. Fluorescence detection 13
2.2.2. Image detection 14
3. EXPERIMENTAL BACKGROUND 16
3.1. Devices 16
3.2. Material and Equipment 18
3.2.1. Material 18
3.2.2. Equipment 18
3.3. Fabrication 18
3.3.1. SU8 molds 19
3.3.2. PDMS device fabrication 20
3.3.3. Surfactant and continuous phase synthesis 21
3.4. Experiment Setup 22
3.5. Data collection 24
3.5.1. Program logic 24
3.5.2. Image processing 25
3.5.3. Functions and Parameters 26
4. EXPERIMENTAL RESULT 29
4.1. Droplet Generation 29
4.1.1. Phase diagram 29
4.1.2. Space oil effect 31
4.2. Particles or cells encapsulation 35
4.2.1. Concept 35
4.2.2. Particles solution preparation 37
4.2.3. Experimental result 37
4.3. Droplet sorting system 40
4.3.1. Concept of Support-vector machine 40
4.3.2. Software 42
4.3.3. Experiment result 43
5. Conclusion and future work 47
5.1. Conclusion 47
5.2. Future work 48
REFERENCES 49
APPENDIX 52
參考文獻 1. Whitesides, G.M., "The origins and the future of microfluidics." Nature, vol 442(7101), pp. 368-73, 2006.
2. Pihl, J., M. Karlsson, and D.T. Chiu, "Microfluidic technologies in drug discovery." Drug Discovery Today, vol 10(20), pp. 1377-1383, 2005.
3. Haeberle, S. and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications." Lab Chip, vol 7(9), pp. 1094-110, 2007.
4. Seemann, R., et al., "Droplet based microfluidics." Reports on Progress in Physics, vol 75(1), pp. 016601, 2012.
5. Zhu, P. and L. Wang, "Passive and active droplet generation with microfluidics: a review." Lab Chip, vol 17(1), pp. 34-75, 2016.
6. Maan, A.A., et al., "Microfluidic emulsification in food processing." Journal of Food Engineering, vol 147, pp. 1-7, 2015.
7. Lecault, V., et al., "Microfluidic single cell analysis: from promise to practice." Curr Opin Chem Biol, vol 16(3-4), pp. 381-90, 2012.
8. Zhang, Y., et al., "A programmable microenvironment for cellular studies via microfluidics-generated double emulsions." Biomaterials, vol 34(19), pp. 4564-72, 2013.
9. Shi, W., et al., "Droplet-based microfluidic system for individual Caenorhabditis elegans assay." Lab Chip, vol 8(9), pp. 1432-5, 2008.
10. Chang, C., et al., "Droplet-based microfluidic platform for heterogeneous enzymatic assays." Lab Chip, vol 13(9), pp. 1817-22, 2013.
11. Xi, H.D., et al., "Active droplet sorting in microfluidics: a review." Lab Chip, vol 17(5), pp. 751-771, 2017.
12. Baret, J.C., et al., "Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity." Lab Chip, vol 9(13), pp. 1850-8, 2009.
13. Cao, Z., et al., "Droplet sorting based on the number of encapsulated particles using a solenoid valve." Lab Chip, vol 13(1), pp. 171-8, 2013.
14. Chabert, M. and J.L. Viovy, "Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells." Proc Natl Acad Sci U S A, vol 105(9), pp. 3191-6, 2008.
15. Sciambi, A. and A.R. Abate, "Accurate microfluidic sorting of droplets at 30 kHz." Lab Chip, vol 15(1), pp. 47-51, 2015.
16. Zhang, K., et al., "On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force." Lab Chip, vol 9(20), pp. 2992-9, 2009.
17. Li, S., et al., "An on-chip, multichannel droplet sorter using standing surface acoustic waves." Anal Chem, vol 85(11), pp. 5468-74, 2013.
18. Hatch, A.C., et al., "Passive droplet sorting using viscoelastic flow focusing." Lab on a Chip, vol 13(7), pp. 1308-1315, 2013.
19. Link, D.R., et al., "Electric Control of Droplets in Microfluidic Devices." Angewandte Chemie International Edition, vol 45(16), pp. 2556-2560, 2006.
20. Niu, X., et al., "Real-time detection, control, and sorting of microfluidic droplets." Biomicrofluidics, vol 1(4), pp. 44101, 2007.
21. Pohl, H.A., Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields. 1978, Cambridge; New York: Cambridge University Press.
22. Ahn, K., et al., "Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices." Applied Physics Letters, vol 88(2), pp. 024104, 2006.
23. Agresti, J.J., et al., "Ultrahigh-throughput screening in drop-based microfluidics for directed evolution." PNAS, vol 107, pp. 4004-9, 2010.
24. Ruppel, R.W.D.P.M.J.M.O.A.B.K.M.L.K.H.C.C.W., "Microwave acoustic materials, devices, and applications." IEEE, vol 50(3), 2002.
25. Frommelt, T., et al., "Microfluidic mixing via acoustically driven chaotic advection." Phys Rev Lett, vol 100(3), pp. 034502, 2008.
26. Thomas Franke, et al., "Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices." Lab on a Chip, vol 9(3), pp. 2625-7, 2009.
27. Schmid, L., D.A. Weitz, and T. Franke, "Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter." Lab Chip, vol 14(19), pp. 3710-8, 2014.
28. Abate, A.R., J.J. Agresti, and D.A. Weitz, "Microfluidic sorting with high-speed single-layer membrane valves." Applied Physics Letters, vol 96(20), pp. 203509, 2010.
29. Yoon, D.H., et al., "Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device." RSC Adv., vol 5(3), pp. 2070-2074, 2015.
30. Medeiros, S.F., et al., "Stimuli-responsive magnetic particles for biomedical applications." Int J Pharm, vol 403(1-2), pp. 139-61, 2011.
31. Teste, B., et al., "Selective handling of droplets in a microfluidic device using magnetic rails." Microfluidics and Nanofluidics, vol 19(1), pp. 141-153, 2015.
32. Ma, Z., et al., "Self-Aligned Interdigitated Transducers for Acoustofluidics." Micromachines, vol 7(12), pp. 216, 2016.
33. Sciambi, A. and A.R. Abate, "Generating electric fields in PDMS microfluidic devices with salt water electrodes." Lab Chip, vol 14(15), pp. 2605-9, 2014.
34. Liu, X., et al., "High-throughput screening of antibiotic-resistant bacteria in picodroplets." Lab Chip, vol 16(9), pp. 1636-43, 2016.
35. Robert de Saint Vincent, M., et al., "Real-time droplet caliper for digital microfluidics." Microfluidics and Nanofluidics, vol 13(2), pp. 261-271, 2012.
36. Zang, E., et al., "Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets." Lab Chip, vol 13(18), pp. 3707-13, 2013.
37. Girault, M., et al., "An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution." Sci Rep, vol 7, pp. 40072, 2017.
38. Siegel, A.C., et al., "Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane)." Angew Chem Int Ed Engl, vol 45(41), pp. 6877-82, 2006.
39. H Lorenz, et al., "SU-8: A low-cost negative resist for MEMS." Micromechanics and Microengineering, vol 7(3), pp. P124-7, 1997.
40. Becker, H. and C. Gartner, "Polymer microfabrication technologies for microfluidic systems." Anal Bioanal Chem, vol 390(1), pp. 89-111, 2008.
41. Rosenfeld, L., et al., "Break-up of droplets in a concentrated emulsion flowing through a narrow constriction." Royal Society of Chemistry, vol 10, pp. 421-30, 2014.
42. Hsu, C.-w., C.-c. Chang, and C.-J. Lin, "Practical Guide to Support Vector Classification." Tech. rep., Department of Computer Science, National Taiwan University., vol, 2003.
43. Otsu, N., "A Threshold Selection Method from Gray-Level Histograms." IEEE Transactions on Systems,Man and and Cybernetics vol 9(1), pp. 62-66, 1979.
44. Teo, A.J.T., et al., "Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device." Anal Chem, vol 89(8), pp. 4387-4391, 2017.
45. Fan, R.-E., et al., "LIBLINEAR: A Library for Large Linear Classification." The Journal of Machine Learning Research, vol 9, pp. 1871-1874, 2008.

指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2018-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明