博碩士論文 104323056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:52.14.126.74
姓名 侯致中(Zhi-Zhong Hou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用單向固化法生長1.6噸級太陽能多晶矽晶碇之數值模擬分析
(Numerical Simulation Analysis of 1.6 ton Solar Multicrystalline Silicon Ingots by Directional Solidification Process)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 單向固化系統法(Directional Solidification System,簡稱DSS)為目前生長大尺寸多晶矽的主要生產方式,其優勢為成本低、製造過程簡單、品質佳及晶碇尺寸大等優點。而目前由美國設備商GT advanced technologies所開發之第八代機台(Generation 8,簡稱G8),已成功的進入噸級晶碇的生產,然而單以加大爐體以生產更大尺寸的矽晶仍有其需要面對的挑戰。
長晶過程與晶碇的品質有極大的關係,為了得到更好的晶碇品質,針對界面形狀、雜質、差排密度及熱應力等指標進行優化,其中加熱器功率比是影響長晶動力的關鍵之一。藉由調控不同的加熱器功率比,控制上及側加熱器之功率,並且在不同固化分率之下,會有不同的影響。在固化初期時,使用較大功率之上加熱器可提高長率,而在固化末期時則會抑制長率,當我們能得到理想的界面形狀,就能夠有效控制缺陷的產生。
另外,熱應力的問題也是影響品質的關鍵之一。在固化過程中,絕緣籠會向上提升進行取熱,由於G8的爐體較大,爐體內部具有相當大的熱能,為了使大量的熱能夠散失,設備商設計了較大的絕緣籠開度,以維持固化過程中的長晶動能。然而當絕緣籠在開始固化的瞬間開度過大時,晶碇內的熱應力也會隨之變大,而這在設備商所交給中美矽晶G8爐體及製程參數所做的實驗中,正好也應證了這個問題。
為了解決熱應力之問題,在絕緣籠的開度上必須重新設計,以達到更好的製程良率。除了熱應力之問題外,改善晶碇品質也是很重要的一環,要兼顧長率與熱應力,使兩者之間取得平衡。
摘要(英)
Directional Solidification System (DSS) is the main method for growing the large-sized multi-crystalline silicon. The advantages of this method are lower production cost, simple manufacturing process, good quality and large crystal size. At present, the eighth generation (G8) furnace, developed by the US equipment maker GT advanced technologies, has been used to grow crystal with 1600 kg silicon feedstock capacity. However, enlarging the furnace to grow the large-sized ingot with the high quality still faces to some challenges
In order to improve crystal quality measured by the crystal-melt interface shape, impurities, dislocation density and thermal stress, the furnace geometry and crystal growth conditions should be optimized. The heating power ratio defined as the power on the top heater to the side one is one of key parameters affecting crystal quality and energy saving. By adjusting the heating power ratio, the power between top and side heater can be controlled. Different heating power ratios will cause different effects on the solidification process. The growth rate is increased at the early stages and reduced at the end of the solidification process when heating power on the top heater is higher than the side one. As a result, the crystal-melt interface will be modified and hence, the formation of defects can be controlled.
In addition, thermal stress is one of the factors affecting the crystal quality significantly. During the solidification process, the side insulation of furnace will be lifted up to take heat out. For large furnace, it is difficult to release heat quickly. Hence, higher raising velocity of the side insulation is designed to maintain the kinetic energy of solidification process. However, when the side insulation is upwardly moved too fast at the early stages, the thermal stress of silicon ingot will get larger. This agrees with the experimental growth of G8 provided by Sino-American silicon Products (SAS).
In sum, the opening of the insulation cage should be re-designed to obtain the lower thermal stress and a better process yield. Besides the improvement of crystal quality, shortening the growth time is also a very important part in this study.
關鍵字(中) ★ 單向固化法
★ 多晶矽晶碇
★ 熱應力
★ 界面形狀
★ 暫態數值模擬
關鍵字(英) ★ Directional Solidification System
★ Multi-crystalline silicon
★ Thermal stress
★ Interface shape
★ Transient numerical simulation
論文目次
目錄
摘要 I
致謝 IV
目錄 V
圖目錄 VII
表目錄 X
符號說明 XI
第一章、緒論 1
1-1研究背景與文獻回顧 1
1-2 單向固化法生長多晶矽晶錠之研究概況 3
1-3多晶矽爐體優化之參考研究 5
1-4研究動機與目的 6
第二章、研究方法 9
2-1物理系統 9
2-2假設條件 9
2-3統御方程式 10
2-4無因次參數 11
2-5紊流計算 12
2-6熱場邊界條件 14
2-7流場邊界條件 15
2-8雜質邊界條件 15
2-9 熱應力與潛變之計算 18
2-10數值方法與網格測試 20
第三章、結果與討論 29
3-1參考型DSS爐體模擬分析 29
3-1-1參考型DSS爐體之多晶矽晶碇界面 29
3-1-2參考型DSS爐體之熱流場分析 31
3-1-3參考型DSS爐體之雜質分析 32
3-1-4參考型DSS爐體之熱應力分析 33
3-2加熱器功率比設計 34
3-3絕緣籠開度設計 35
3-4使用保溫塊之爐體設計 36
3-5不同氬氣流率之影響 37
3-6修改型與參考型爐體之比較 37
第四章、結論與未來研究方向 66
4-1結論 66
4-2未來研究方向 67
參考文獻 69
參考文獻

[1] Jinglan Hong, Wei Chen, Congcong Qi, Liping Ye, Changqing Xu,” Life cycle assessment of multi-crystalline silicon photovoltaic cell production in China” Solar Energy, vol.133,pp.283–293,2016
[2] 蔡進譯,「超高效率太陽能電池─從愛因斯坦的光電效應談起」,物理雙月刊,vol.27卷5期,pp.701-719,2005
[3] A. A. Istratov, T. Buonassisi, M. D. Pickett, M. Heuer, and E. R. Weber,
”Control of metal impurities in “dirty” multi-crystalline silicon for solar cells,” Materials Science and Engineering: B, vol. 134, pp. 282-286,2006.
[4] 林建翰,「2014年矽晶太陽能新技術發展趨勢概況」,光連雙月刊,No.112,pp.8-12,2014
[5] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, et al.,
”Suppression of light degradation of carrier lifetimes in low-resistivity CZ–Si solar cells,” Solar Energy Materials and Solar Cells, vol. 65, pp.277-285, 2001.
[6] M.P. Bellmann, B.Panjwani, M.Syvertsen, E.A.Meese,” Dynamic simulation of impurity transport and chemical reactions in a Bridgman furnace for directional solidification of multi-crystalline silicon” Journal of Crystal Growth, vol.369, pp.47-54,2013
[7] G.Du, L.Zhou, P.Rossetto and Y.Wan, ”Hard inclusions and their detrimental effects on the wire sawing process of multi-crystalline silicon”, Solar Energy Materials & Solar Cells, vol. 91, pp. 1743–1748, 2007
[8] S. Martinuzzi, I. Pe´richaud, O. Palais” Segregation phenomena in large-size cast multi-crystalline Si ingots” Solar Energy Materials & Solar Cells, vol.91,pp.1172-1175,2007
[9] Bei Wu, Nathan Stoddard, Ronghui Ma, Roger Clark,” Bulk multi-crystalline silicon growth for photovoltaic (PV) application” Journal of Crystal Growth, vol.310,pp.2178-2184,2008
[10] Chang lin Ding,Meiling Huang, Genxiang Zhong, Liang Ming, Xinming Huang,” A design of crucible susceptor for the seeds preservation during a seeded directional solidification process” Journal of Crystal Growth, vol.387, pp.73-80,2014
[11] Wei Chen, Quanzhi Wang, Deren Yang, Lin Dong Li, Xue Gong Yu, Lei Wang, Hao Jin,” Influence of vertical temperature gradients on wafer quality and cell
efficiency of Seed-assisted high-performance multi-crystalline silicon” Journal of Crystal Growth, vol.467, pp65-70,2017
[12] S. Nakano n , B. Gao, K. Kakimoto,” Relationship between oxygen impurity distribution in multi-crystalline solar cell silicon and the use of top and side heaters during manufacture” Journal of Crystal Growth,vol.375,pp.62-66,2013
[13] Kjerstin Ellingsen, Dag Lindholm and Mohammed M′Hamdi, ”The effect of heating power on impurity formation and transport during the holding phase in a Bridgman furnace for directional solidification of multi-crystalline silicon”, Journal of Crystal Growth, Vol. 444, pp. 39–45, 2016
[14] Zaoyang Li, Lijun Liu, XinLiu a, Yunfeng Zhang, Jingfeng Xiong,” Effects of argon flow on melt convection and interface shape in a directional solidification process for an industrial-size solar silicon ingot ”, Journal of Crystal Growth, Vol.360, pp.87-91,2012
[15] Zaoyang Li, Yunfeng Zhang, Zhiyan Hu, Genshu Zhou, Lijun Liu,” Numerical investigation of the effect of a crucible cover on crystal growth in the industrial directional solidification process for silicon ingots” Journal of Crystal Growth, Vol.401, pp291-295,2014
[16] Thi Hoai Thu Nguyen , Szu-Han Liao, Jyh-Chen Chen, Chun-Hung Chen, Yen-Hao Huang, Cheng-Jui Yang, Huang-Wei Lin, Huy Bich Nguyen,” Effects of the hot zone design during the growth of large size multi-crystalline silicon ingots by the seeded directional solidification process,” Journal of Crystal Growth, Vol.452, pp.27-34,2016
[17] Wencheng Ma, Genxiang Zhong, Lei Sun, Qinghua Yu, Xinming Huang, Lijun Liu” Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells” Journal of Crystal Growth, Vol.100,pp231-238,2012
[18] Xiaofang Qi, Wenhan Zhao, Lijun Liu, Yang Yang, Genxiang Zhong, Xinming Huang,” Optimization via simulation of a seeded directional solidification process for quasi-single crystalline silicon ingots by insulation partition design” Journal of Crystal Growth, Vol.398, pp5-12,2014
[19] Xiaofang Qi , QinghuaYu , WenhanZhao , XueqinLiang , JunZhang and LijunLiu, ”Improved seeded directional solidification process for producing high-efficiency multi-crystalline silicon ingots for solar cells”, Solar Energy Materials & Solar Cells, Vol. 130, pp. 118–123, 2014
[20] Xu Ma, Lili Zheng, Hui Zhang, Bo Zhao, Cheng Wang, Fenghua Xu,” Thermal system design and optimization of an industrial silicon directional solidification system” Journal of Crystal Growth, Vol.318,pp.288-292,2011
[21] B. Gao , S. Nakano and K. Kakimoto, ”Effect of crucible cover material on impurities of multi-crystalline silicon in a unidirectional solidification furnace”, Journal of Crystal Growth, Vol. 318, pp. 255–258, 2011
[22] Zhiyong Wu, Genxiang Zhong, Xucheng Zhou, Zhaoyu Zhang, Zixu Wang, Wenliang Chen, Xinming Huang,” Upgrade of the hot zone for large-size high-performance multi-crystalline silicon ingot casting” Journal of Crystal Growth, Vol.441,pp.58-63,2016
[23] Wenliang Chen, Zhiyong Wu, Genxiang Zhong, Junjing Ding, Yunyang Yu, Xucheng Zhou, Xinming Huang,”Optimization of heat transfer by adjusting power ratios between top and side heaters for casting high-performance multi-crystalline silicon ingots” Journal of Crystal Growth, Vol.451,pp.155-160,2016
[24] Zhiyong Wu, Genxiang Zhong, Zhaoyu Zhang, Xucheng Zhou, Zixu Wang, Xinming Huang,” Optimization of the high-performance multi-crystalline silicon solidification process by insulation partition design using transient global simulations,” Journal of Crystal Growth, Vol.426,pp.110-116,2015
[25] Mohammed M’Hamdi, Sylvain Gouttebroze, Hallvard G . Fjær,” Thermo-mechanical analysis of the ingot–crucible contact during multi-crystalline silicon ingot casting,” Journal of Crystal Growth, Vol.318,pp.269-274,2011
[26] A. Raufeisen, M. Breuer, T. Botsch, and A. Delgado, ”DNS of rotating buoyancy– and surface tension–driven flow,” International Journal of Heat and Mass Transfer, vol. 51, pp. 6219-6234, 2008
[27]”CGSim Flow Module Theory Manual.”
[28] M. Wolfshtein, ”The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient,” International Journal of Heat and Mass Transfer, vol. 12, pp. 301-318, 1969
[29] 鄧應揚,”太陽能多晶矽晶錠固化生長之熱流場與雜質輸送研究”,國立中央大學,博士論文,2011
[30] A. D. Smirnov and V. V. Kalaev, ”Analysis of impurity transport and deposition processes on the furnace elements during Cz silicon growth,” Journal of Crystal Growth, vol. 311, pp. 829-832, 2009
[31] A. D. Smirnov and V. V. Kalaev, ”Development of oxygen transport model in Czochralski growth of silicon crystals,” Journal of Crystal Growth, vol. 310, pp. 2970-2976, 2008
[32] G. A. S. R.I. Scace, ”Solubility of Carbon in silicon and Germanium,” Journal of Chemical Physics, vol. 30, pp. 1551-1555, 1959
[33] Olga V. Smirnova, Vasif M. Mamedov, and Vladimir V. Kalaev, ”Numerical Modeling of Stress and Dislocations in Si Ingots Grown by Seed-Directional Solidification and Comparison to Experimental Data,” Crystal Growth Design
[34] Y.-Y. Teng, J.-C. Chen, C.-W. Lu, and C.-Y. Chen, ”The carbon distribution
in multicrystalline silicon ingots grown using the directional solidification
process,” Journal of Crystal Growth, vol. 312, pp. 1282-1290, 2010.
[35] Y.-Y. Teng, J.-C. Chen, C.-W. Lu, H.-I. Chen, C. Hsu, and C.-Y. Chen,
”Effects of the furnace pressure on oxygen and silicon oxide distributions during
the growth of multicrystalline silicon ingots by the directional solidification
process,” Journal of Crystal Growth, vol. 318, pp. 224-229, 2011.
[36] V. V. Kalaev, I. Y. Evstratov, and Y. N. Makarov, ”Gas flow effect on global
heat transport and melt convection in Czochralski silicon growth,” Journal of
Crystal Growth, vol. 249, pp. 87-99, 2003.
[37] V. V. Kalaev, D. P. Lukanin, V. A. Zabelin, Y. N. Makarov, J. Virbulis, E.
Dornberger, et al., ”Calculation of bulk defects in CZ Si growth: impact of melt
turbulent fluctuations,” Journal of Crystal Growth, vol. 250, pp. 203-208, 2003.
指導教授 陳志臣 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明