博碩士論文 104323057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.138.116.17
姓名 陳有志(You-Chih Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 新型沸石FAM Z05與MOF之吸附性能研究
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由重量量測法(load cell)量測新型沸石FAMZ05與金屬有機架構MOF(Metal-organic frameworks)在低溫熱源驅動之水汽吸附性能實驗,並以常壓及真空腔體內之兩種不同環境下,與傳統沸石(13X、Y、ZSM-5、SAPO)和矽膠相互做比較來得出在不同工作溫度壓力下之等溫吸附曲線圖,找出各吸附劑在額定製冷條件下之吸附率差,以利將來吸附床在吸附式空調系統內之設計。從實驗結果顯示,在常壓下以Y型沸石有較佳之吸附速率,只需3小時即能達飽和狀態,較適合運用於短循環時間之吸附式空調系統。SAPO型沸石則有最大之吸附量,在8小時之吸附率約0.27 g/g,後面仍持續吸附,適合運用於長循環時間之吸附式系統。真空腔體方面,MOF與FAM Z05相較於其他吸附劑在60 oC即能脫附水氣,表示在低溫熱源驅動下就能進行脫附作用,因此有機會應用於吸附式空調系統中。最後以常見冷凍空調系統之額定製冷條件進行吸脫附比較,發現金屬有機架構MOF有最佳之吸附率差0.27 g/g,因此將來吸附床在吸附式空調系統內之設計以MOF為最佳之吸附劑。
摘要(英) The goal of this study is to measure adsorption performances for water vapor in the case of FAM Z05 and MOF (Metal-organic frameworks) by using gravimetric method (load cell). The study was conducted under two different environments, which are atmospheric pressure and vacuum. In addition, more materials, such as traditional zeolites: 13X, Y type, ZSM-5, SAPO and silica gel, were used to compare adsorption performance for water vapor under the same environments. The adsorption rate differences for each adsorbent under the air conditioning condition were calculated. It could highly improve the design for adsorption bed in adsorption system in the future.

According to the result of the study, Y type zeolite had the best adsorption speed. It only needed three hours to reach saturated state, and so it is more applicable in adsorption systems with short cycles. SAPO zeolite had the best adsorption rate, the adsorption rate for SAPO zeolite is 0.27 g/g in eight hours. It could still adsorb water vapor after eight hours, and it is applicable in adsorption systems with long cycles. In vacuum chamber, comparing MOF and FAM Z05 with others, MOF and FAM Z05 desorb water vapor at 60 oC, which means they could desorb water vapor at much lower temperature. Therefore, it becomes more desirable in terms of adsorption system. Comparing adsorption rate differences under various air conditioning condition, MOF has the best adsorption rate difference. As a result, MOF might be a good design for coating adsorption bed in the future.

Keyword: gravimetric method, adsorption system, zeolite, FAM Z05, MOF.
關鍵字(中) ★ 重量量測法
★ 等溫吸附曲線圖
★ 吸附式空調系統
★ 沸石
★ FAM Z05
★ MOF
關鍵字(英)
論文目次 摘要 ii
Abstrac iii
目錄 iii
表目錄 v
圖目錄 vi
符號說明 ix
第一章、前言 1
1.1研究背景 1
1.2研究目的 8
第二章、文獻回顧 19
2.1吸附原理 19
2.1.1單分子層吸附 20
2.1.2多層吸附 20
2.2吸附劑吸附性能量測法 22
2.2.1容積量測法 22
2.2.2重量量測法 24
2.4結論 25
第三章、實驗方法 38
3.1水汽吸附系統設計 38
3.2實驗系統 38
3.3實驗量測設備 38
3.3.1溫度量測 39
3.3.2壓力量測 39
3.3.3重量量測 39
3.3.4資料擷取系統 39
3.4實驗步驟 40
3.4.1室外之量測吸附劑之吸附速率 40
3.4.2室外之不同溫度下的吸附劑吸附能力 40
3.4.3填充冷媒 40
3.4.4腔體內吸附性能測試 41
3.5吸附劑放置重量 42
3.6吸附率公式 42
第四章、結果與討論 50
4.1常壓下沸石之吸附速率與性能分析 50
4.2真空腔體內等溫及等壓水汽吸附性能比較 51
第五章、結論 69
參考文獻 70
附錄、實驗誤差分析 72
參考文獻 [1] 羅凱帆、黃蒨芸、李建宏、康育豪,2014,「吸附式製冷循環系統技術」,台灣能源期刊,第1卷第二期。
[2] 謝鎮州、張文師、王智正、唐震宸,2004,「運用工業廢熱之固體吸附式製冷系統」,化工技術,第12卷第四期。
[3] P.J.F. Harris, Z. Liu, K. Suenaga, 2008, “Imaging the atomic structure of activated carbon”, Journal of Physics: Condensed Mater, 2008, Vol. 20, 362201.
[4] F. Schuth, K. Sing, J. Weitkamp, 2002, Handbook of Porous Solids, Wiley-Vch, Vol. 3, p.1547.
[5] A. Mastinu, A. Kumar, G. Maccarinelli, S.A. Bonini, M. Premoli, F. Aria, A. Gianoncelli, M. Memo, 2019, “Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral”, molecules, Vol 24(8), p.1517.
[6] S.K. Masoudian, S. Sadighi, A. Abbasi, “Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials”, 2013,Bulletin of Chemical Reaction Engineering & Catalysis, Vol. 8(1), pp.54 – 60.
[7] M.A. Carreon, “Molecular sieve membranes for N2/CH4separation”, 2017, Journal of Material Research, Vol. 33, pp. 32-43.
[8] M.A. den Hollander, M. Wissink, M. Makkee, J.A.Moulijn, “Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts”, Applied Catalysis A:General, , 2002, Vol. 223, pp.85-102.
[9] H.T. Chua, K.C. Ng, A. Chakraborty, N. Oo, and M. A. Othman, 2002, “Adsorption Characteristics of Silica Gel + Water System”, Journal of Chemical and Engineering Data, Vol. 47, pp.1177-1181.
[10] S.C. Sayilgan, M. Mobedi, S. Ulku, 2016, “Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13X-water pair”, Microporous and Mesoporous Materials, Vol. 224, pp.9-16.
[11] S. Kayal, S. Baichuan, B.B. Saha, 2016, “Adsorption characteristics of AQSOA zeolites and water for adsorption chillers”, International Journal of Heat and Mass Transfer, Vol. 92, pp.1120-1127.
[12] .W.B. Teo, A. Chakraborty, W. Fan, 2017, “Improved adsorption characteristics data for AQSOA types zeolites and water system under static and dynamic conditions”, Microporous and Mesoporous Materials ,Vol. 242, pp.109-117.
[13] 徐樹剛、戴清智、張昭君,2014,˹以動態吸附實驗評估矽凝膠、活性碳與沸石之水氣吸附特性˺,中華民國環境工程學會廢水處理技術研討會。
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明