博碩士論文 104323061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:18.218.207.253
姓名 蕭宜倫(Yi-Lun Xiao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 粉床熔融成型積層製造回收系統之管路二相流模擬分析
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要目標為發展粉床熔融成型積層製造中金屬粉末氣送回收系統,此回收系統是利用氣體輸送技術進行粉末回收。此回收系統不但可以改善粉末的浪費,更可將回收的粉末回送至雷射燒結的供料區,進而讓雷射燒結製程可以長時間持續運轉,更有利去發展製作大尺寸的物件,例如航空等級零組件等。
本研究使用COMSOL Multiphysics進行模擬分析,利用雙向耦合之Eulerian-Lagrangian方法來模擬粉床熔融成型積層製造回收系統之二相流影響,探討不同的曲率半徑對其氣體流場與顆粒運動對系統的影響,針對在氣送過程中繩索現象、金屬粉末與管壁的損害,以及金屬粉末在管路內的沉積等問題。並針對粉末供應系統進行進氣系統之幾何外型設計,模擬結果可知,改善設計之進氣系統可以改善粉末沉積對粉末輸送造成的不均勻性。
摘要(英)

The main purpose of this study is to establish a metal-powder recycles system for the Powder Bed Fusion. The recycle system uses pneumatic conveying system for powder recovery. The recycle system decreased metal-powder waste. Overflow powder from the laser sintering machine is recovered and recycled back into the laser sintering machine for reuse. And laser sintering machine can operate for a long time, be more conducive to the development of large-scale production of objects, such as aviation part, equipment, etc.
The mechanism of the pneumatic conveying in a curved pipe with different geometric shapes is numerically procedure by using COMSOL Multiphysics in this study. The air flow field and the particle′s motion in the pipe are considered. The gas-solid flow is solved by employing two-way coupled Eulerian-Lagrangian approach. The particle rope, powder deposition and bend erosion due to the collision of metal-powder and wall is also analyzed. Then, design the gas inlet system, the simulation results indicate that improving the design of the gas inlet system will improve the non-uniformity of powder delivery caused by powder deposition.
關鍵字(中) ★ 積層製造
★ 金屬粉末
★ 氣送回收
★ 二相流
關鍵字(英) ★ Additive manufacturing
★ Metal powder
★ Pneumatic conveying recycle system
★ two-phase flow
論文目次
摘要 I
Abstract II
誌謝 III
目錄 IV
附圖目錄 VII
附表目錄 X
符號說明 XI
第一章 緒論 1
1.1 前言 1
1.2 積層製造技術發展 2
1.3 金屬積層製造 4
1.4 金屬粉末 5
1.5 粉末處理與回收技術 7
1.6 氣送技術研究發展 10
1.7 研究動機與論文架構 14
第二章 基礎理論與數值模擬 26
2.1 有限元素法 27
2.2 流體運動理論 28
2.2.1 管路內的二次流現象 28
2.2.2 統御方程式 29
2.2.3 紊流模式 31
2.2.4 紊流邊界層處理 33
2.3 顆粒運動理論 33
2.3.1 流體粒子追蹤 33
2.3.2 粒子追蹤模組 34
2.4 流體與顆粒之間的耦合 36
2.4.1流體與顆粒相互作用 36
2.4.2 牆壁與顆粒相互作用 37
2.5 損耗模型(Erosion Model) 38
2.5.1 Finnie Erosion Model 39
2.5.2 E/CRC Erosion Model 40
2.5.3 Oka Erosion Model 40
2.5.4 DNV Erosion Model 41
2.6 粉床熔融成型積層製造氣送回收系統 41
2.7 模擬幾何與參數 44
2.8 假設與邊界條件 45
2.8.1 假設條件 45
2.8.2 邊界條件 45
2.9 網格獨立分析 46
第三章 結果與討論 56
3.1 粉床熔融成型積層製造回收系統的流動現象 57
3.1.1 回收系統中在不同R/D比下對氣體流動現象的影響 57
3.1.2 回收系統中的粒子軌跡和損耗分佈在不同的R/D比下對顆粒運動的影響 61
3.2 加入進氣設計至回收系統 64
3.2.1 不同進氣設計之影響與探討 65
3.2.2 加入Venturi Powder Ejector進氣設計於回收系統中之影響與探討 65
第四章 結論 90
參考文獻 93
參考文獻
1. ASTM. ASTM F2792-10 Standard Terminology for Additive Manufacturing Technologies.
2. Wohlers T. and Gornet T., ‘‘History of additive manufacturing,’’ Wohlers Report,2014.
3. Hull C. W., ‘‘Apparatus for production of three-dimensional objects by stereolithography,’’ U.S. Patent, 4575330 A ,1986.
4. Feygin M. and Pak S. S., ‘‘Laminated object manufacturing apparatus and method,’’ U.S. Patent, 5876550 A, 1988.
5. Crump S. S., ‘‘Apparatus and method for creating three-dimensional objects,’’ U.S. Patent, 5121329 A, 1989.
6. Agarwala M., Bourell D., Beaman J., Marcus H., and Barlow J., ‘‘Direct selective laser sintering of metals,’’ Rapid Prototyping Journal, 1, pp.26-36, 1995
7. Sachs E. M., Haggerty J. S., Cima M. J., and Williams P. A., ‘‘Three-dimensional printing techniques,’’ U.S. Patent, 5204055 A, 1989.
8. Sames W. J., List F. A., Pannala S., Dehoff R. R., and Babu S. S. “The metallurgy and processing science of metal additive manufacturing,” International Materials Reviews, pp.315-360, 2015.
9. Ardila L. C., Garciandia F., González-Díaz J. B., Álvarez P., Echeverria A., Petite M. M., Deffley R., and Ochoa J., “Effect of IN718 recycled powder reuse on properties of parts manufactured by means of Selective Laser Melting,” Physics Procedia, 56, pp.99-107, 2014.
10. Beaman J. J. and Deckard C. R., ‘‘Selective Laser Sintering with Assisted Powder Handling,’’ U.S. Patent, 4938816 A, 1990.
11. Forderhase P. F., Deckard C. R., and Klein J. M., “Apparatus and Method for Producing Parts with Multi-directional Powder Delivery,’’ U.S. Patent, 252264 A, 1993.
12. Cox B. D., “Selective laser sintering powder recycle system,” U.S. Patent, 7887316 B2, 2011.
13. Cox B. D., “Pneumatic Powder Transport System,” U.S. Patent, 7296599 B2, 2007.
14. Chu K. W. and Yu A. B., “Numerical Simulation of the Gas−Solid Flow in Three-Dimensional Pneumatic Conveying Bends,” Industrial & Engineering Chemistry Research, 47, pp. 7058-7071, 2008.
15. Sakai M. and Koshizuka S., “Large-scale discrete element modeling in pneumatic conveying,” Chemical Engineering Science, 64, pp.533-539, 2009.
16. Brosh T., Kalman H., and Levy A., “DEM simulation of particle attrition in dilute-phase pneumatic conveying,” Granular Matter, 13, pp. 178-181, 2011.
17. Li K., Kuang S. B., Pan R. H., and Yu A. B., “Numerical study of horizontal pneumatic conveying: Effect of material properties,” Powder Technology, 251, pp. 15-24, 2014.
18. Setia G. and Mallick S. S., “Modelling fluidized dense-phase pneumatic conveying of fly ash,” Powder Technology, 270, pp. 39-45, 2015.
19. Yilmaz A. and Levy E. K., “Formation and dispersion of ropes in pneumatic conveying,” Powder Technology, 114, pp.168-185, 2001.
20. Xiang J., McGlinchey D., and Latham J. P., “An investigation of segregation and mixing in dense phase pneumatic conveying,” Granular Matter, 12, pp. 345-355, 2010.
21. Gomes L. M. and Mesquita A. L. A., “Effect of particle size and sphericity on the pickup velocity in horizontal pneumatic conveying,” Chemical Engineering Science, 104, pp.780-789, 2013.
22. Cai L., Liu S., Pan X., Guiling X., Xiaoping C., and Changsui Z., “Influence of carbonaceous powders on flow characteristics of dense-phase pneumatic conveying at high pressure,” Experimental Thermal and Fluid Science, 58, pp. 121-130, 2014.
23. Rinoshika A., “Self-excited pneumatic conveying of granular particles in various horizontal curved 90∘bends,” Experimental Thermal and Fluid Science, 63, pp. 9-19, 2015.
24. Kalman H., “Attrition control by pneumatic conveying,” Powder Technology, 104, pp. 214-220, 1999.
25. Kalman H., “Attrition of powders and granules at various bends during pneumatic conveying,” Powder Technology, 112, pp. 244-250, 2000.
26. Aarseth K. A., “Attrition of Feed Pellets during Pneumatic Conveying: the Influence of Velocity and Bend Radius,” 89, pp. 197–213, 2004.
27. Weiste H., “Pneumatic spreader with flat tube bends,” E.P. Patent, 0956757 B1, July 3, 2002.
28. Pfeiffer J. W. and Boroch A. E., “Rotary feeder valve for pneumatic conveying system,” U.S. Patent, 0269369 A1, December, 8, 2005.
29. 陳悅軍、王維國、欒玉偉、解文芳,“一種散裝物料氣力輸送裝置”,中國專利,CN202744008 U,February,20,2013。
30. Forestier N. M. and Alfrost M., “Method of controlling operation of a pneumatic conveying system,” U.S. Patent, 0321843 A1, November, 12, 2015.
31. Movahhedy M.,Gadala M. S., and Altintas Y., ‘‘Simulation of the orthogonal metal cutting process using an arbitrary lagrangian-eulerian finite-element method,” Journal of Materials Processing Technology, 2000.
32. Huerta A. and Liu W. K., ‘‘Viscous flow with large free surface motion,” Computer Methods in Applied Mechanics and Engineering, 1988.
33. Idelchik, I. E et al, ‘‘Handbook of Hydraulic Resistance,’’ Hemisphere Publishing Corp, 1986.
34. Spalart P. R. and Allmaras S. R., ‘‘A one-equation turbulence model for aerodynamic flows,” American Institute of Aeronautics and Astronautics, 1992.
35. Launder B. E. and Spalding D. B., “Lectures in Mathematical Models of Turbulence” Academic Press, 1972.
36. Menter F. R., Kuntz M., and Langtry R., ‘‘Ten Years of Experience with the SST Turbulence Model,” Turbulence, Heat and Mass Transfer, 4, pp. 625-632, 2003.
37. Wilcox D. C., “Turbulence Modeling for CFD (Third Edition),” DCW Industries, Inc., La Canada, California, 1998.
38. “Particle Tracing Module User’s Guide,” COMSOL Multiphysics, 1998 – 2016.
39. Pereira G.C., de Souza F.J., and de Moro Martins, D.A., ‘‘Numerical prediction of the erosion due to particles in elbows’’ Powder Technol, 261, pp.105-117, 2014.
40. Lin et al., ‘‘Effect of the gas–solid two-phase flow velocity on elbow erosion,’’ Journal of Natural Gas Science and Engineering, 26, pp.581-586, 2015.
41. Bikbaev F. A., Maksimenko M. Z., Berezin V. L., Krasnov V. I., and Zhilinskii I. B., ‘‘Wear on branches in pneumatic conveying ducting,’’ Chem. Pet. Eng, 8 , ,pp.465-466, 1972.
42. Bikbaev F. A., Krasnov V. I., Maksimenko M. Z., Berezin V. L., Zhilinski I. B., and Otroshko N. T., ‘‘Main factors affecting gas abrasive wear of elbows in pneumatic conveying pipes,’’ Chem. Pet. Eng. 9 , pp.73-75, 1973.
43. Eyler R. L., ‘‘Design and Analysis of a Pneumatic Flow Loop’’ M.S. thesis. West Virginia University, Morgantown,1987.
44. Chen X., McLaury B.S., and Shirazi S.A., ‘‘Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees’’ Comput. Fluids , 33 , pp.1251-1272, 2004.
45. Finnie I., “Some Observations on the Erosion of Ductile Metals,” Wear, 19, pp.81–90, 1972.
46. Ahlert K.R., “Effects of particle impingement angle and surface wetting on solid particle erosion of AISI 1018 Steel’’ Ph.D. thesis, Depart-ment of Mechanical Engineering, University of Tulsa, 1994.
47. McLaury B. S., “Predicting solid particle erosion resulting from turbulent fluctuation in oilfield geometries,” Ph.D. thesis, University of Tulsa ,1996.
48. Zhang Y., Reuterfors E.P., McLaury B.S., Shirazi S.A., and Rybicki E.F., ‘‘Comparison of computed and measured particle velocities and erosion in water and air flows,’’ Wear, 263, pp.330-338, 2007.
49. Oka Y.I., Okamura K., and Yoshida T., ‘‘Practical estimation of erosion damage caused by solid particle impact. Part 1: effects of impact parameters on a predictive equation,’’ Wear, 259, pp.95–101, 2005.
50. Oka Y.I., Okamura K., and Yoshida T., ‘‘Practical estimation of erosion damage caused by solid particle impact. Part 2: mechanical properties of materials directly associated with erosion damage,’’ Wear, 259, pp.102–109, 2005.
51. Veritas D.N., ‘‘Recommended Practice, Erosion Wear of Piping Systems,’’ DNV RP O,5012007.
52. Wang H. and Wang. D., ‘‘Experimental investigation of the performance of a novel foam generator for dust suppression in underground coal mines,” Advanced Powder Technology, 25, pp. 1053-1059, 2014.
53. Wang H., Wang D., and Lu X., ‘‘Experimental investigations on the performance of a new design of foaming agent adding device used for dust control in underground coal mines,” Journal of Loss Prevention in the Process Industries, 25, pp. 1075-1084, 2012.
54. Xie F. and Wu Z. S., ‘‘Numerical Simulation and Experimental Study of Gas-solid Two-phase Flow in Venturi Tubes,” Journal of Power Engineering, 02, pp. 237-241, 2007.
55. ISO 5167, venturi meter calculations
56. Takamura H., Ebara S., Hashizume H., Aizawa K., and Yamano H., ‘‘Flow visualization and frequency characteristics of velocity fluctuations of complex turbulent flow in a short elbow piping under high reynolds number condition,’’ Journal of Fluids Engineering , 134 , 2012.
57. Dean W. R., ‘‘Fluid motion in a curved channel’’ Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character , pp.402-420, 1928.
58. Dutta P., Saha S. K., Nandi N., and Pal N., “Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modelling,” Engineering Science and Technology, an International Journal, 19, pp.904-910, 2016
59. Peng W. and Cao X., “Numerical simulation of solid particle erosion in pipe bends for liquid–solid flow,” Powder Technology, 294, pp.266-279, 2016.
60. Peng W. and Cao X., “Numerical prediction of erosion distributions and solid particle trajectories in elbows for gas-solid flow,” Journal of Natural Gas Science and Engineering, 30, pp.455-470, 2016.
61. Zamani M., Seddighi S., and Nazif H. R., ‘‘Erosion of natural gas elbows due to rotating particles in turbulent gas-solid flow,’’ Journal of Natural Gas Science and Engineering, 40,pp.91-113, 2017.
62. Njobuenwu D. O. and Fairweather M., ‘‘Modelling of pipe bend erosion by dilute particle suspensions,’’ Computers and Chemical Engineering, 42,pp.235-247, 2017.
63. Ren W., Guo Q., Zuo B., and Wang Z., “Design and application of device to add powdered gelling agent to pipeline system for fire prevention in coal mines,” Journal of Loss Prevention in the Process Industries, 41, pp.147-153, 2016.
64. Xu J., Liu X., and Pang M., “Numerical and experimental studies on transport properties of powder ejector based on double venturi effect,” Vacuum, 134, pp.92-98, 2016.
65. Liu W., Xu J., and Liu X., “Numerical study on collision characteristics for non-spherical particles in venturi powder ejector,” Vacuum, 131, pp.285-292, 2016.
66. Pereira G. C., de Souza F. J., and de Moro Martins D.A., “Numerical prediction of the erosion due to particles in elbows,” Powder Technology, 261, pp.105-117, 2014.
指導教授 蕭述三 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明