博碩士論文 104323063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.142.54.83
姓名 洪維振(Wei-Chen Hung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 噴流式MOCVD入口導流設計之熱流與質傳分析
(Jet flow MOCVD inlet diversion design and analysis of heat flow and mass transport)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 半導體薄膜製造一直為全世界製造研究熱點,金屬有機化學氣相沉積法(MOCVD)因具有製造良好均勻度大尺寸薄膜的能力,且兼具高純度,材料變化高等靈活性,為現今LED磊晶產業主要的製程技術,也因為近來LED發展,MOCVD製程目前也具有一定的成熟度。
多數垂直式MOCVD模擬分析的入口邊界採用氣體流出slot後作為入口幾何條件,鮮少探討氣體在腔體上方的分流情形,因此本研究採用有限元素分析軟體,探討流體從單一氣孔和進行入口導流之後作相互比較。本研究設計一套入口導流系統,其系統可分上下兩層導流板,上下兩層分別先進行個別模擬,其中上層部分有進行實驗相互驗證,兩層分別完成之後,最後進行雙層導流模擬,此研究目的為提升導流板出口(腔體入口)處之流速均勻度,進而提升薄膜生長均勻度。
模擬結果顯示,上層導流板之分流角度和下方slot的角度會有一定影響,若是兩分流角度和slot角度相差22.5度會取得最佳的腔體入口流速分佈,此部分結果和實驗結果相互對應。調整slot寬度,可以發現減少slot寬度需要更高的壓力差才能使氣體擴散至腔體內,因而增加腔體入口流速均勻度。下層導流板設計,發現增加六入口設計,可以減少外側slot流速較高的問題,最後調整不同通道和slot寬度比例,可以取得單一slot最佳的流速均勻度。
雙層導流系統,藉由氣體配置模擬,可以發現有機物(TMAl)適合由上層導流板通入,氨氣(NH3)適合由下層導流板通入,套用質傳模擬,增加中間slot設計題生入口下方有機物濃度均勻度,最後進行模模生長模擬,可以發現雙層導流後製造之薄膜均勻度較高,薄膜不均勻度提升至8.8%。
摘要(英)
Semiconductor thin film manufacturing has been a worldwide research hotspot, metal organic chemical vapor deposition(MOCVD) due to the manufacture of good uniformity of large-size film, and both high purity, material changes and high flexibility, which the main process for the current LED epitaxial industry. But also for the development of LED industry in recent years, MOCVD process is also a certain degree of maturity.
Most of the vertical MOCVD analysis of the inlet boundary using gas out of slot as the entrance boundary conditions, rarely discuss the gas flow above the chamber, so this study uses finite element analysis software to comparison with fluid from a round jet, and gas flow after inlet diversion. In this study, a set of inlet diversion system is designed. The system can be divided into two layers, the upper and the lower layers are respectively simulated. Flow simulation, the purpose of this study is to enhance the flow rate uniformity of the chamber inlet, thereby increasing the film growth uniformity.
According to the simulation results, if the diversion angle of upper baffle plate and bottom is 22.5 degrees, the optimal velocity distribution of the chamber inlet is obtained. The results of this part also correspond to the experimental results. By adjusting the slot width, it can be found that reducing the slot width requires a high pressure difference to diffuse the gas into the chamber, thereby increasing the uniformity of the chamber inlet flow rate. The lower baffle design, found to increase the six-entry design, can reduce the lateral slot flow rate higher problem, and finally adjust the different channel and slot width ratio, it can get a single slot the best flow rate uniformity.
For double layer diversion design, it can be found that TMAl is suitable for passing through the upper baffle, and NH3 is suitable for passing through the lower baffle by gas configuration simulation. Apply mass transfer simulation, the results show that uniformity of the film is increased to 8.8% after the double-layer diversion is carried out, and the uniformity of the organic matter is increased.
關鍵字(中) ★ 有機金屬化學氣相沉積法
★ 流場分析
★ 導流板設計
關鍵字(英) ★ MOCVD
★ flow field analysis
★ diversion design
論文目次
目錄
摘要 V
Abstract VI
目錄 VIII
圖目錄 XII
符號說明 XVI
第一章 緒論 1
1-1 研究背景 1
1-2 薄膜沉積原理 2
1-2-1 氣相反應過程 3
1-2-2 吸附過程 3
1-3 MOCVD反應腔體與進氣系統分類 4
1-4 文獻回顧 5
1-5 研究動機與目的 8
第二章 研究方法 14
2-1 物理系統 14
2-1-1 腔體模型 14
2-1-2 上層導流板設計 14
2-1-3 下層導流板設計 15
2-1-4 雙層導流板 15
2-2 數學模型 15
2-2-1 物理系統 15
2-2-2 基本假設 16
2-2-3 統御方程式 16
2-2-4 邊界條件 17
2-3混合氣體物理參數 18
2-4化學反應方程與速率 21
2-4-1 化學反應速率 21
2-5 表面吸附速率 22
2-5-1吸附速率(The rate of adsorption) 22
2-6 薄膜長速與沉積速率 23
2-7 無因次參數 23
2-8 上層導流板實體設計 25
2-9 COMSOL Multiphysics 25
2-9-1 網格配置 26
2-9-2 收斂性測試 26
2-10 Matlab 26
第三章 實驗原理與方法 33
3-1 實驗設備介紹 33
3-1-1 可視化腔體介紹 34
3-1-2 系統介紹 34
3-1-3 觀測及量測儀器 38
3-2 實驗方法 40
3-2-1 影像處理分析方法 40
3-2-2 PIV技術原理 41
3-2-3 PIVlab優點 41
3-3 實驗流程及步驟 42
3-3-1 實驗配置 42
3-3-2 實驗步驟 43
第四章 結果與討論 46
4-1 上層導流板分析與驗證 46
4-1-1 上層導流板設計概念 46
4-1-2 導流入口分流角度探討 46
4-1-3 安裝上層導流板後流場分析與驗證 47
4-1-4 噴流流縫寬度分析 48
4-2 下層導流板分析 49
4-2-1 下層導流板設計概念 49
4-2-2 下層導流板入口與分流設計 50
4-2-3 下層導流板水平通道與垂直噴流道(slot)設計概念 51
4-3 雙層導流板分析 52
4-3-1 完整導流板概念 52
4-3-2 氣體配置 52
4-3-3 增加中間噴氣流道概念 53
4-4 薄膜生長均勻性探討 54
4-4-1 單一氣孔入口與加入導流系統之均勻性比較 54
第五章 結論與未來研究方向 79
5-1 結論 79
5-2 未來研究方向 80
參考文獻 81
參考文獻

參考文獻
[1]莊達人, ”VLSI 製造技術,” 高立圖書有限公司, 1996.
[2]E. M. McCash, ”Surface chemistry,” 2001.
[3]M. Dauelsberg, E.J. Thrush, B. Schineller, J. Kaeppeler, ”Technology of MOVPE Production Tools,” Elsevier Ltd, pp. 39-68, (2004).
[4]B. Mitrovic, A. Gurary, L. Kadinski, ”On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters,” Journal of Crystal Growth, Vol. 287, pp. 656-663, (2006).
[5]A. Lobanova, K. Mazaev, E. Yakovlev, R. Talalaev, A. Galyukov, Y. Makarov, et al., ”Parametric studies of III-nitride MOVPE in commercial vertical high-speed rotating disk reactors,” Journal of Crystal Growth, Vol. 266, pp. 354-362, (2004).
[6] L. Kadinski, V. Merai, A. Parekh, J. Ramer, E.A. Armour, R. Stall, A. Gurary, A. Galyukov, Yu. Makarov, ”Computational analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors,” Journal of Crystal Growth, Vol. 261 , pp. 175-181, (2004).
[7] B. Mitrovic, A. Parekh, J. Ramer, V. Merai, E. A. Armour, L. Kadinski, et al., ”Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors,” Journal of Crystal Growth”, Vol. 289, pp. 708-714, (2006).
[8] R.Zuo, H. Zhang, T.F. Lin, “Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets”, Journal of Crystal Growth, Vol. 293, pp. 498-508, (2006).
[9] C. H. Lin, W.T.Cheng, J.H.Lee, ” Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling, ”International Communications in Heat and Mass Transfer”, Vol. 36, pp. 680–685, (2009).
[10] D.I. Fotiadis, and S. Kieda, “Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy: I. Effects of heat transfer characteristics, reactor geometry, and operating conditions, “Journal of Crystal Growth, Vol. 102, pp. 441-470, (1990).
[11] Y.-H. Liu, L.-W. Tseng, C.-Y. Huang, K.-L. Lin, and C.-C. Chen, ”Particle image velocimetry measurement of jet impingement in a cylindrical chamber with a heated rotating disk,” International Journal of Heat and Mass Transfer”, Vol. 65, pp. 339-347, (2013).
[12] T. G. Mihopoulos, V. Gupta, K. F. Jensen, “A reaction-transport model for AlGaN MOVPE growth”, Journal of Crystal Growth, Vol. 195, pp. 733-739, (1998).
[13] Triantafillos J. Mountziaris, ”Gas-phase and surface reaction mechanisms in MOCVD of GaAs with trimethyI-gallium and arsine,” Journal of The Electrochemical Society, Vol. 138, issue 8, (1991).
[14] Yu Jen Hsu, Lu Sheng Hong, Kau Fong Huang, Jing En Tsay, ”Low temperature metalorganic chemical vapor deposition of gallium nitride using dimethyl-hydrazine as nitrogen source, ”, Thin Solid Films,Elsevier, (2002)
[15] 吳家寧, ”MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析,” 國立中央大學, 2014.
[16] 林瑤, ”考量氣體分子吸附性質之MOCVD垂直反應腔體模擬分析,” 國立中央大學, 2015.
[17] 劉正皓, ”噴流式MOCVD腔體之熱流及質傳分析,” 國立中央大學, 2016.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明