博碩士論文 104323064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.230.143.213
姓名 莊效存(Hsiao-Tsun Chuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 KY法生長大尺寸氧化鋁單晶過程之 數值模擬分析
(Numerical Simulation of Large-Size Sapphire Crystal during the Kyropoulos Process)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 泡生法(Kyropoulos method, KY)是目前工業長晶中最大量被使用的長晶方法,因為其生長出來的晶體,溫度梯度較其他長晶法低,也因此較適合拿來生長較大尺寸的晶體;受限於KY爐體的設計,而無法直接觀察生長晶體的完整過程,且直接進行實驗量測,將會耗費許多時間及金錢,因此本研究使用以有限元素法(FEM)為基礎的套裝模擬軟體COMSOL Multiphysics,針對藍寶石晶體生長,模擬分析整個長晶過程的熱流場以及熱應力的分佈。
本研究結果顯示,隨著晶體生長,最大熱應力的發展分為三階段,第一階段為晶冠生長時期,在這個階段,最大熱應力會隨著晶冠的尺寸擴大而增加,第二階段則是晶體增長時期,在這個階段最大熱應力則是隨著晶體長度增加而下降,最後一階段,因為晶體的生長,逐漸靠近坩堝底部,而在這階段,最大熱應力則是隨著越靠進鍋底而增大。
此外透過調整不同加熱器功率下降速度可以發現,若加熱器功率下降速度較快的話,其晶冠外型將會生長的叫為平坦,且其最大熱應力也會跟著變大:反之,若加熱器功率下降的較慢的話,其晶冠外型則會相對陡峭,而熱應力也會相對變小。
另外本研究也透過修改坩堝外型以及輻射熱遮罩面積,來探討這些結構的修改對熱應力所造成的影響,結果顯示有導圓角的坩堝外型將更有助於提升晶體生長的品質;而隨著晶體表面積的增加,輻射熱遮到對於晶體熱應力的影響會越小。
摘要(英)
The Kyropoulos method (KY) is the most common crystal growth method used in the industrial manufacturing large size crystal, because the crystal with this method has lower temperature gradient, and therefore it is more suitable for the larger size crystal growth. It is not easy to observe the complete process of crystal growth directly because of the design of KY furnace. Moreover, experimental measurement will spend a lot of time and money, so this study uses COMSOL Multiphysics which is the finite element software based on the theories of thermal and fluid dynamics. With this software, we tried to simulate the whole process of sapphire crystal growth, and analysis the phenomenon of crystal growth.
The results show that with the growth of crystal, the maximum thermal stress can be divided into three stages: crown stage, body stage and tail stage. At crown stage, the maximum thermal stress increases as the length of crystal increases. And at body stage, the maximum thermal stress decreases as the length of crystal increases. The last stage, because the crystal is closer to the bottom of the crucible, so at tail stage, the maximum thermal stress increases as the length of crystal increase.
By adjusting the speed of different heater power, it can be found that if the heater power decreases faster, the crystal crown shape will be flat, and the maximum thermal stress will be larger. On the other hand, if the heating power decreases slower, the crystal crown shape will be relatively steep, and thermal stress will be relatively smaller.
The study also explored the effect of the different furnace structures, such as different size thermal shield and different crucible shape, which also effect the quality of crystal .
關鍵字(中) ★ 泡生法
★ 藍寶石長晶
★ 數值模擬
關鍵字(英)
論文目次
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1 藍寶石晶體(氧化鋁單晶)簡介 1
1-2 泡生法介紹 2
1-3 文獻回顧 3
1-4 研究動機與目的 6
第二章 系統描述與數學模式 11
2-1 物理系統與假設 11
2-2 數學模式 12
2-2-1 熱流場方程式 12
2-2-2低雷諾數k-ɛ紊流模式 16
2-2-3熱應力場方程式 18
第三章 數值方法 23
3-1 無因次參數分析 23
3-2 離散座標法 24
3-3 固化理論及晶體外型繪製 24
3-4 網格測試與收斂測試 25
3-5求解步驟 26
第四章 結果與討論 32
4-1 KY法生長大尺寸晶體熱流場分析 32
4-2 Rosseland radiation model & Discrete Ordinates method 35
4-3 KY 法生長過程之熱應力分析 37
4-4 不同 Power history 對晶體外形影響 38
4-5 不同 Power history 對熱應力影響 39
4-6 輻射熱遮罩對熱應力的影響 41
4-7 坩堝外形對熱應力之影響 42
第五章 結論與未來研究方向 71
參考文獻 73
參考文獻

[1] 陳俊宏 ,”泡生法長氧化鋁單晶之數值模擬分析”, 國立中央大學機械工程研究所, 博士論文, 2012.
[2] 陳旻聰,”CZ法生長大尺寸藍寶石單晶之熱流場與雜質數值模擬研究”, 國立中央大學機械工程研究所, 碩士論文, 2014.
[3] 呂中偉,”以熱交換器法生長氧化鋁單晶之模擬分析”, 國立中央大學機械工程研究所, 博士論文, 2002.
[4] 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均為, 工程材料科學, P44, ISBN 957-21-0830-1, 1996.
[5] M. S. Akselrod and F. J. Bruni, ”Modern trends in crystal growth and new applications of sapphire, ” Journal of Crystal Growth, vol. 360, pp. 134-145, 2012.
[6] D. viechnicki, ”Crystal growth using the heat exchanger method” Journal of Crystal Growth”, vol. 26, pp.162-164, 1974.
[7] H.J. Scheel, T. Fukuda, ”The Development of Crystal Growth Technology ”, Crystal Growth Technology, pp. 3-14, 2003.
[8] R. Falckenberg, ”Growth of stoichiometric Mg-Al spinel single crystals by a modified verneuil technique”, Journal of Crystal Growth, vol. 13, pp. 723-725, 1972.
[9] G. Foulon, ”Laser heated pedestal growth and optical properties of Yb3+-doped LiNbO3 single crystal fibers”, Journal of Crystal Growth, vol. 245, pp. 555-560, 2000
[10] Yusuke Mori, ”Growth of a nonlinear optical crystal: cesium lithium borate”, Journal of Crystal Growth, vol. 156, pp. 307-309, 1995.
[11] Wei Jia Zhang, ”Crystal growth of NaNb3O8 solid solution by Kyropoulos method”, Journal of Crystal Growth, vol. 100, pp. 655-657, 2002.
[12] Vladimir V. Timofeev, Vladimir V. Kalaev, and Vadim G. Ivanov, ”Effect of heating conditions on flow patterns during the seeding stage of Kyropoulos sapphire crystal growth”, Journal of Crystal Growth, vol. 445, pp. 47-52, 2016.
[13] S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.M. Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov, and V.V. Kalaev, ”Numerical analysis of sapphire crystal growth by the Kyropoulos technique”, Journal of Crystal Growth, vol. 30, pp. 62-65, 2007.
[14] Weina Liu, Jijun Lu, Hongjian Chen, Wenbo Yan, Chunhua Min, Qingqing Lian, Yunman Wang, Peng Cheng, Caichi Liu, and Yongliang Xu, ”Study on crystal-melt interface shape of sapphire crytal growth by KY method”, Journal of Crystal Growth, vol. 431, pp. 15-23, 2015.
[15] 李宏凱, ”利用Kyropoulos方法生長藍寶石單晶之研究”, 中華技術學院, 碩士論文, 2006.
[16] 侯帝光, ”志誠參數對藍寶石長單晶品質之研究”, 中華技術學院, 碩士論文, 2009.
[17] Chun-Hung Chen, Jyh-Chen Chen, Chung-Wei Lu, Che-Ming Liu, ”Numerical simulation of heat and fluid flows for sapphire single crystal growth by the Kyro poulos method”, Journal of Crystal Growth, vol. 318, pp. 162-167, 2011.
[18] Chun-Hung Chen, Jyh-Chen Chen, Chung-Wei Lu, ”Effect of power arrangement on the crystal shape during the Kyropoulos sapphire crystal growth process”, Journal of Crystal Growth, vol. 352, pp. 9-15, 2012.
[19] Chun-Hung Chen, Jyh-Chen Chen, Yi-Shiuan Chiue, Ching-Hsin Chang, ”Thermal and stress distributions in larger sapphire crystals during the cooling process in a Kyropoulos furnace”, Journal of Crystal Growth, vol. 385, pp. 55-60, 2014.
[20] N. Miyazaki, ”Quantitative assessment for cracking in oxide bulk single crystals during Czochralski growth: development of a computer program for thermal stress analysis” Journal of Crystal Growth, vol. 162, pp. 83-88, 1996.
[21] S.E. Demina, ”3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth” Journal of Crystal Growth, vol. 320, pp. 23-27, 2011.
[22] Masaki Kobayashi, ”Effect of internal radiation on thermal stress fields in 55 CZ oxide crystals” Journal of Crystal Growth, vol.241, pp. 241-248, 2002.
[23] D. Vizman, I. Nicoara, and G. Müller, ”Effects of temperature asymmetry and tilting in the vertical Bridgman growth of semi-transparent crystals”, Journal of Crystal Growth, vol. 212, pp. 334-339, 2000.
[24] Tran Phu Nguyen, Yao-Te Hsieh, Jyh-Chen Chen, Chieh Hu, Huy Bich Nguyen, ”Effect of crucible and crystal rotations on the convexity and thermal stress in large size sapphire crystals during Czochralski growth”, Journal of Crystal Growth, vol. 468, pp. 514-525, 2017.
[25] Jyh-Chen Chen, Chung-Wei Lu, ”Influence of the crucible geometry on the shape of the melt-crystal interface during growth of sapphire crystal using a heat exchanger method”, Journal of Crystal Growth, vol. 266, pp. 239-245, 2004.
[26] W.J. Lee, Y.C. Lee, H.H. Jo, Y.H. Park, ”Effect of crucible geometry on melt convection and interface shape during Kyropoulos growth of sapphire single crystal”, Journal of Crystal Growth, vol. 324, pp. 248-254, 2011.
[27] M.F. Modest, ”Radiative Heat Transfer”, Academic Press, Amsterdam, Boston, P257, 2003.
[28] 闕宜萱, ”泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析”, 國立中央大學機械工程研究所, 碩士論文, 2012.
[29] Brewster, MQ, ”Thermal Radiative Transfer and Properties”, P502-510, John Wiley& Sons, New York. 1992.
[30] S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.M. Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov, and V.V. Kalaev, ”Use ofnumerical simulation for growthing high-quality sapphire crystal by the Kyropoulos methode”, Journal of Crystal Growth. vol. 310, pp. 1443-1447, 2008.
[31] M. H. Tavakkoli and H. Wilke, ”Numerical study of induction heating and heat transfer in a real Czochralski system,” Journal of Crystal Growth, vol. 275, pp. e85-e89, 2005.
[32] P. D. Thomas, J. J. Derby, L. J. Atherton, R. A. Brown, and M. J. Wargo, ”Dynamics of liquid-encapsulated czochralski growth of gallium arsenide: Comparing model with experiment,” Journal of Crystal Growth, vol. 96, pp. 135-152, 1989.
[33] B. R. Seo., ”A Numerical Study of buoyant turbulent flows using Low-Reynolds number k- ɛ model ” 2001.
[34] P. Jagadeesh and K. Murali, ”Application of low-Re turbulence models for flow simulations past underwater vehicle hull forms,” Journal of Naval Architecture and Marine Engineering, vol. 2, p. 14, 2009.
[35] D. C. Harris, ”Materials for Infrared Windows and Domes: Properties and Performance”, SPIE Press, 1999.
[36] Michael F. Modest, ”Radiative heat transfer”, McGraw-Hill, Inc., 1993.
[37] Ying-Yang Teng, Jyh-Chen Chen, Cheng-Chuan Huang, Chung-Wei Lu, ”Numerical investigation of the effect of heat shield shape on the oxygen impurity distribution at the crystal-melt interface during the process of Czchralski silicon crystal growth”, Journal of Crystal Growth, vol. 352, pp. 167-172, 2012.
[38] 謝耀德, ”CZ法生長大尺寸氧化鋁單經過程之數值模擬研究”, 國立中央大學機械工程研究所, 碩士論文, 2015.
[39] Wenjia Su, Ran Zuo, Kirill Mazaev, Vladimir Kalaev, ”Optimization of crystal growth by changes of flow guide, radiation shield and sidewall insulation in CZ Si furnace”, Journal of Crystal Growth, vol. 312, pp. 495-510, 2010.
[40] T. Vodenitcharova, L.C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho, M. Sato, ”The effect of anisotopy on the deformation and fracture of sapphire wafers subjected to thermal shocks”, Journal of Materials Processing Techology, vol. 194, pp. 51-62, 2007.
指導教授 陳志臣 審核日期 2017-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明