博碩士論文 104323068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:54.224.230.51
姓名 魏楷(Kai Wei)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雷射直寫技術應用於金屬網格軟性透明電極製作
(Fabrication of Flexible, Metal-mesh Transparent Electrode Using Laser Direct Writing)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2018-12-31以後開放)
摘要(中) 本研究旨在開發雷射直寫技術應用於製作金屬網透明電極。採用自行合成之金屬離子複合物作為雷射燒結之材料,此複合物由特定比例的硝酸銀與聚乙烯醇(Polyvinyl alcohol)混合而成。當雷射光聚焦於此複合物薄膜時,複合物吸收的光轉成熱能加速離子還原,並燒結成銀奈米顆粒。給予適當之雷射光強度與平台走速,可將已還原之銀奈米顆粒燒結成銀線。雷射燒結之銀線具有良好的光學與機械性質並具有良好的導電性,可用於製作可撓式銀網透明電極。外觀部分,本研究燒結之銀線最小線寬為5 微米,尖峰高度大約為300至400奈米。而導電特性部分,使用最佳化之製程參數可達電阻率約銀塊材10倍之銀線,顯示具有良好的導電性。我們也探討5種不同雷射功率(20、40、60、80、100 mW)在5個平台走速(0.1、0.3、0.5、0.7、1.0 mm/s)時銀線之微結構變化,在本研究所探討的參數範圍內,平台走速對於銀線之品質與微結構變化影響較為顯著。 接著,我們將最佳化之銀線燒結參數用於銀網製作,可獲得良好的銀網電及特性:片電阻小於19 ?/sq而透光率大於85 %,毫不遜於市售之商用金屬氧化物電極。由於 300 – 400 奈米高之銀線,仍嫌過高,易刺穿薄膜結構,特別是有機光電元件,其有機薄膜厚度常在數十至數百奈米之間。為製作高平坦之電極,我們將附著在玻璃基板上之銀線嵌入聚?亞胺軟板上 (Polyimide),製作軟性崁入式金屬網電極(Flexible embedded metal mesh electrode)。我們將嵌入式電極作往復撓曲運動,以瞭解電極之電性穩定度,結果顯示試片在承受拉張應力、撓曲半徑為5 mm時,經過5000次往復撓曲後,其片電阻由原來的19 ?/sq增至24 ?/sq,增加約24%,仍在可接受範圍之內。最後,將雷射燒結之銀網電極應作白光有機發光二極體(White light OLED)之陰極,顯示擁有可取代傳統透明金屬氧化物電極之可能性。
摘要(英) This study aims to develop a laser direct writing technique for fabricating metal mesh transparent electrodes. The self-synthesized Ag-doped polyvinyl alcohol (PVA) nanocomposite is used for selective laser sintering, SLS. The nanocomposite is a mixture consisting of silver nitrate, AgNO3, and PVA. As irradiated by laser, the chelated Ag ions are first reduced from PVA and then aggregate into silver nanoparticles, Ag NPs. With appropriate operating parameters, laser power and scan speed, the reduced Ag NPs can be sintered into silver wires. The SLSed silver wires show good optical and mechanical properties and exhibit good conductivity, which can be used as flexible Ag mesh transparent electrodes. Within the current operating parameters, the sintered silver wire has a minimum line width of 5 μm, a peak height of about 300 to 400 nm and an optimum sheet resistance down to 10 times of the bulk silver. We investigate the microstructures of silver wires subjected to five laser powers of 20, 40, 60, 80, and 100 mW, respectively; and, each at five scan speeds of 0.1, 0.3, 0.5, 0.7, 1.0 mm/s. Results show that the scan speed has a more significant effect on the microstructure and quality of silver wires. Based on the relatively optimum operating condition of laser, the best sintered Ag mesh has the features: sheet resistance is less than 19 Ω/sq and transmittance is larger than 85%, no less favorable than commercial metal oxide electrodes. The height of Ag lines range from 300 to 400 nm, which is still too high, especially for organic optoelectronic devices where the thickness of organic film is often between tens to hundreds of nanometers. To fabricate a metal mesh electrode with a very low surface roughness, the sintered silver mesh on the glass substrate was embedded in a polyimide film to produce a flexible embedded Ag mesh electrode. To examine the stability in conductivity, we conduct a cyclically tensile loading test on the flexible Ag mesh substrate. Results show the sheet resistance is increased from 19 to 24 Ω/sq, an increase of 24%, after 5000 cycles of loading where the substrate is bended at a radius of curvature of 5 mm. The sintered Ag mesh electrode is finally used as the cathode of a white light OLED to demonstrate its feasibility to replace the usual transparent metal oxide electrode.
關鍵字(中) ★ 雷射直寫
★ 金屬網格
★ 透明電極
★ 選擇性雷射燒結
關鍵字(英) ★ laser direct write
★ metal mesh
★ transparent electrode
★ selective laser sintering
論文目次 中文摘要 i
Abstract ii
Contents iv
Lists of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1-1 Selective laser sintering 1
1-2 Applications of SLS in electronics 1
Chapter 2 Literature review 3
2-1 Development of transparent electrode 3
2-2 Sample preparation of SLS 5
2-2-1 Ag NPs synthesis 7
2-2-2 Cu NPs synthesis 8
2-3 SLS process 9
2-3-1 Experimental setup of SLS 9
2-3-2 Continuous wave (CW) laser for SLS 10
2-3-3 Ultrafast laser for SLS 12
2-3-4 Comparison of CW laser and pulse laser of SLS 13
2-4 Results of SLS metal NPs 14
2-5 Motivation 22
Chapter 3 Experimental details 23
3-1 Experiment procedure 23
3-2 Sample preparation 23
3-2-1 Pre-cleaning of substrate 23
3-2-2 Nanocomposite synthesis 24
3-2-3 Formation of nanocomposite thin film 24
3-3 SLS process 24
3-4 Micropattern embedded in PI 25
3-5 Summary 26
3-6 Laboratory supplies 28
Chapter 4 Results and Discussion 30
4-1 Mechanism of SLS Ag-doped PVA nanocomposite 30
4-2 Focused beam spot size calculation 31
4-3 Surface morphology of Ag lines 32
4-3-1 Ag lines morphology 32
4-3-2 Summary 36
4-4 Electrical property of Ag line 36
4-4-1 Resistivity of SLS Ag lines 36
4-4-2 Microstructure of SLS Ag lines 39
4-4-3 EDX analysis of Ag lines 42
4-4-4 Summary 45
4-5 Electrical and optical properties of Ag mesh 45
4-5-1 Ag meshes 45
4-5-2 Sheet resistance of Ag mesh 46
4-5-3 Transmittance measurement of Ag mesh 47
4-5-4 Summary 48
4-6 Application to optoelectronic device 49
4-7 Mechanical property of FTE 50
Chapter 5 Conclusions 54
References 56

參考文獻 [1] Minami, T.. "Transparent conducting oxide semiconductors for transparent electrodes." Semiconductor Science and Technology 20.4 (2005): S35.
[2] Andersson, A., et al. "Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs." Advanced Materials 10.11 (1998): 859-863.
[3] Jiang, X., et al. "Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices." Applied Physics Letters 83.9 (2003): 1875-1877.
[4] Kim, H., et al. "Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices." Journal of Applied Physics 86.11 (1999): 6451-6461.
[5] Ginley, D. S., and Clark B.. "Transparent conducting oxides." Mrs Bulletin 25.08 (2000): 15-18.
[6] Kang, M.G., and Guo, L.J.. "Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light?Emitting Diodes." Advanced Materials 19.10 (2007): 1391-1396.
[7] Lee, J.Y., et al. "Solution-processed metal nanowire mesh transparent electrodes." Nano letters 8.2 (2008): 689-692.
[8] Ajayan, P.M., and Otto Z.Z.. "Applications of carbon nanotubes." Carbon nanotubes. Springer Berlin Heidelberg (2001): 391-425.
[9] Novoselov, K. S. A., et al. "Two-dimensional gas of massless Dirac fermions in graphene." nature 438.7065 (2005): 197-200.
[10] Martin, C.R. "Template synthesis of electronically conductive polymer nanostructures." Accounts of chemical research 28.2 (1995): 61-68.
[11] De Volder, M.F., et al. "Carbon nanotubes: present and future commercial applications." science 339.6119 (2013): 535-539.
[12] Vosguerichian, P.S.M., and Zhenan B.. "A review of fabrication and applications of carbon nanotube film-based flexible electronics." Nanoscale 5.5 (2013): 1727-1752.
[13] Langley, D., et al. "Flexible transparent conductive materials based on silver nanowire networks: a review." Nanotechnology 24.45 (2013): 452001.
[14] Allen, M.J., Tung, V.C., and Kaner, R.B.. "Honeycomb carbon: a review of graphene." Chemical reviews 110.1 (2009): 132-145.
[15] de Gans, B.J., Duineveld, P.C., and Schubert, U.S.. "Inkjet printing of polymers: state of the art and future developments." Advanced materials 16.3 (2004): 203-213.
[16] Ahn, S.H., and Guo, L.J.. "Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting." ACSnano 3.8 (2009): 2304-2310.
[17] Chen, J.F., and Matthews, J.A.. "Mask for photolithography." U.S. Patent No. 5,242,770. 7 Sep. 1993.
[18] Son, Y., et al. "Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles." Advanced Materials 23.28 (2011): 3176-3181.
[19] Sun, Y., and Younan X.. "Shape-controlled synthesis of gold and silver nanoparticles." Science 298.5601 (2002): 2176-2179.
[20] Zhang, Z., Bin Z., and Liming H.. "PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes." Journal of Solid State Chemistry 121.1 (1996): 105-110.
[21] Chou, K.S., and Ren, C.Y.. "Synthesis of nanosized silver particles by chemical reduction method." Materials Chemistry and Physics 64.3 (2000): 241-246.
[22] Hong, Sukjoon, et al. "Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink."
ACS nano 7.6 (2013): 5024-5031.
[23] Maruo, S., and Tatsuya S.. "Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix." Optics express 16.2 (2008): 1174-1179.
[24] Nakamura, T., et al. "Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution." Applied physics A 104.4 (2011): 1021-1024.
[25] Tsutsumi, Naoto, Kazuya Nagata, and Wataru Sakai. "Two-photon laser fabrication of three-dimensional silver microstructures with submicron scale linewidth." Applied Physics A 103.2 (2011): 421-426.
[26] Cheng, Y.T., Uang, R.H., and Chiou, K.C.. "Effect of PVP-coated silver nanoparticles using laser direct patterning process by photothermal effect." Microelectronic Engineering 88.6 (2011): 929-934.
[27] Lee, M.T., et al. "Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write." Journal of Micromechanics and Microengineering 21.9 (2011): 095018.
[28] Zhao, Y.Y., et al. "Tailored silver grid as transparent electrodes directly written by femtosecond laser." Applied Physics Letters 108.22 (2016): 221104.
[29] Yeo, J., et al. "Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics." PloS one 7.8 (2012): e42315.
[30] Kwon, J., et al. "Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications." ACS applied materials & interfaces (2016).
[31] Min, H., et al. "Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate." Optics and Lasers in Engineering 80 (2016): 12-16.
[32] Lee, D., et al. "Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors." ACS nano 8.10 (2014): 9807-9814.
[33] Chung, J., et al. "Conductor microstructures by laser curing of printed gold nanoparticle ink." Applied Physics Letters 84.5 (2004): 801-803.
[34] Aminuzzaman, M., Akira W., and Tokuji M.. "Laser Direct Writing of Conductive Silver Micropatterns on Transparent Flexible Double-Decker-Shaped Polysilsesquioxane Film Using Silver Nanoparticle Ink." Journal of Electronic Materials 44.12 (2015): 4811-4818.
[35] Auyeung, R.C.Y., et al. "Laser direct-write of metallic nanoparticle inks." J. Laser Micro/Nanoeng 2.21 (2007): 21-25.
[36] Lee, K.S., et al. "Recent developments in the use of two?photon polymerization in precise 2D and 3D microfabrications." Polymers for advanced technologies 17.2 (2006): 72-82.
[37] Chung, J., et al. "Damage-free low temperature pulsed laser printing of gold nanoinks on polymers." Journal of Heat Transfer 127.7 (2005): 724-732.
[38] Ko, S.H., et al. "All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles." Nanotechnology 18.34 (2007): 345202.
[39] Yabuki, A., and Norzafriza A.. "Electrical conductivity of copper nanoparticle thin films annealed at low temperature." Thin Solid Films 518.23 (2010): 7033-7037.
[40] Schroder, K. A., McCoo, S.C., and Furlan, W. F.. "Broadcast photonic curing of metallic nanoparticle films." Proc. NSTI Nanotechnology Conf.(May 2006). 2006.
[41] Zenou, M., et al. "Laser sintering of copper nanoparticles." Journal of Physics D: Applied Physics 47.2 (2013): 025501.
[42] Zidan, H.M. "Effect of AgNO 3 filling and UV-irradiation on the structure and morphology of PVA films." Polymer testing 18.6 (1999): 449-461.
[43] Chou, K.S., and Ren C.Y.. "Synthesis of nanosized silver particles by chemical reduction method." Materials Chemistry and Physics 64.3 (2000): 241-246.
[44] Qin, G.L., and Akira W.. "Formation of indium tin oxide film by wet process using laser sintering." Journal of Materials Processing Technology 227 (2016): 16-23.
[45] Zhou, W., et al. "Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength." ACS Applied Materials & Interfaces 8.37 (2016): 24887-24892.
[46] Yen, C.C., Chang T. C., and Hideo K.. "Studies on the preparation and properties of conductive polymer. I. Novel method to prepare metalized plastic from metal chelate of poly (vinyl alcohol)." Journal of applied polymer science 40.1?2 (1990): 53-66.
[47] Zidan, H.M. "Effect of AgNO 3 filling and UV-irradiation on the structure and morphology of PVA films." Polymer testing 18.6 (1999): 449-461.
[48] Khanna, P.K., et al. "Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method." Materials Chemistry and Physics 93.1 (2005): 117-121.
[49] Self, S.A. "Focusing of spherical Gaussian beams." Applied optics 22.5 (1983): 658-661.
[50] Alzoubi, Khalid, et al. "Bending fatigue study of sputtered ITO on flexible substrate."Journal of Display Technology 7.11 (2011): 593-600.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2017-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明