博碩士論文 104323074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:100.26.179.196
姓名 涂右霖(Tu You-Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Underwater Position Control of Particles)
相關論文
★ 應用於車身號碼打刻機之號碼辨識★ 複合式掌紋識別系統
★ 圓形偵測在OLED Panel 檢測上的應用★ MLCC薄膜厚度即時線上影像檢測技術之研發
★ 全自動微鑽針影像檢測系統之研究★ 應用類神經網路預測COG製程對於中小尺寸TFT-LCD產生之應力狀態
★ 應用機器視覺系統檢測高滲透壓刀輪切割 TFT-LCD 玻璃後斷面之研究★ 低成本輕量化機械手臂之研究
★ 應用在同軸電纜加工之雷射光斑導引機構設計與分析★ 表面電漿波共振-非旋轉方式的新機構設計理論
★ 網路協同式機械設計系統研發★ 軟膠囊自動辨識系統
★ 心電訊號之擷取與分析★ 盲人圖樣感知輔助裝置之研發設計
★ 非旋轉式表面電漿共振儀之改良與實現★ 可攜式無線心電訊號擷取器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究針對 2.4MHz 之水下聲波鑷子進行了一系列完整的設計、模擬、
製造以及實驗驗證。本研究的聲波鑷子設計主要根據菲涅爾半波帶理論、聲阻抗匹配理論和聲反射原理。然後,本研究使用有限元素法軟體模擬設計之聲波鑷子在二維平面、軸對稱和移動模型下的聲學特徵與粒子分佈。模擬結果首先證明了菲涅爾透鏡設計的成功,其次是聲波鑷子在特定位置抓取並操控粒子的可能性,最後是聲波鑷子抓取並移動粒子的可行性。聲波鑷子接下來利用光阻曝光顯影與翻模法製造,並以PZT-5H 壓電片與製造的PDMS菲涅爾薄膜組合而成。在實驗當中,聲波鑷子在水下以2.4MHz、40Vpp的弦波電壓驅動,實驗結果證明了聲波鑷子可以在靜態、不同水面反射高度和移動等不同狀況下,如同模擬所示抓取並移動 50 μm 的 PVC 粒子,這些結果將有益於未來的聲波鑷子發展與研究。
摘要(英) This study designs, simulates, fabricates, and verifies an acoustic tweezer operating at 2.4 MHz in the liquid. The acoustic tweezer is designed mainlyaccording to Fresnel Half-Wave Band (FHWB), acoustic impedance mismatch, and acoustic reflection theory. This study uses FEM software to simulate the acoustic characteristic and particle distribution of the acoustic tweezer in two-dimension,axisymmetric, and translation conditions. The simulation result firstly proves the success of FHWB Fresnel lens design, secondly indicatesthat the possibility to trap and manipulate the particle in several different conditions, and third the possibility to manipulate the particles in translation. The acoustic tweezer is fabricated with photolithography and replica molding method, then assembled with PZT-5H transducer and fabricated PDMS Fresnel lens membrane. In the experiment, the acoustic tweezer operates at 2.4 MHz sinusoidal signal with 40 Vpp in the water medium. The experiment shows that the acoustic tweezers could captures and manipulates the PVC particle with 50 μm in static, different water level, and translation as the simulation indicate. Those results could be beneficial to future development and research of acoustic tweezers.
關鍵字(中) ★ 聲波鑷子
★ 粒子操縱
★ 菲涅爾透鏡
★ 菲涅爾半波帶理論
關鍵字(英) ★ Acoustic Tweezer
★ Particle Manipulation
★ Fresnel lens
★ FHWB
論文目次 摘要................. ................................ i
Abstract............................................. ii
Acknowledgement..................................... iii
Table of Contents.................................... iv
List of Figures......................................vii
List of Tables.......................................xii
1. Introduction....................................... 1
1.1 Review............................................ 2
1.1.1 The Development of Acoustic Tweezer............. 4
1.1.2 The Application of Acoustic Tweezer............. 8
1.2 Structure........................................ 13
2. Theory............................................ 14
2.1 Fresnel Half-Wave Band Theory.................... 14
2.2 Potential Well................................... 16
2.3 Acoustic Radiation Forces........................ 17
2.3.1 Acoustic Gradient Force and Potential Energy .. 17
2.3.2 Acoustic Scattering Forces..................... 18
2.3.3 Acoustic Absorption Forces..................... 19
2.4 Lennard-Jones Potential ......................... 19
2.5 Acoustic Impedance Mismatch theory .............. 21
2.6 Acoustic Reflection ............................. 22
2.7 The Inverse-Square Law of Sound Attenuation ..... 23
2.8 Stokes’ law of sound attenuation ................ 23
2.9 Stokes Force..................................... 24
3. Simulation........................................ 25
3.1 Determine the Lennard-Jones parameter ........... 25
3.2 The Two-Dimension Static Simulation ............. 26
3.2.1 The Acoustic Characteristic Boundary Condition. 28
3.2.2 The Particle Distribution Boundary Condition... 28
3.3 The Water Level Simulation....................... 29
3.4 The Axisymmetric Static Simulation............... 30
3.5 The Particle Translation Simulation ............. 31
3.6 The Simulation Result............................ 32
3.6.1 The Determine of the L-J potential parameter... 32
3.6.2 The Two-Dimension Simulation Result............ 32
3.6.3 The Water Level Simulation Result.............. 40
3.6.4 The Axisymmetric Simulation Result............. 43
3.6.5 The Particle Translation Simulation Result .... 45
4. Fabrication....................................... 48
4.1 SU-8 photolithography mold ...................... 48
4.2 PDMS Fresnel lens................................ 51
4.3 The Acoustic Tweezer Assembly ................... 53
5 Experiment and Experiment Result................... 55
5.1 The Static Experiment............................ 55
5.1.1 The Macroscopic Static Experiment.............. 57
5.1.2 The Water Level Experiment..................... 58
5.2 The Translation Acoustic Tweezer Experiment ..... 58
5.3 The Experimental Result.......................... 59
5.3.1 The Static Experimental Result................. 59
5.3.2 The Water Level Experiment Result ............. 63
5.3.3 The Translation Experiment Result.............. 67
6. Discussion, Conclusion and Future Work ........... 70
6.1 Discussion ...................................... 70
6.1.1 The Simulation................................. 70
6.1.2 The Experiment................................. 72
6.2 Conclusion ...................................... 74
6.3 Future Work...................................... 75
7 Reference.......................................... 77
參考文獻 [1] D. G. Grier, ”A revolution in optical manipulation,” Nature, vol. 424, pp. 810-
816, 2003.
[2] T. Laurell, F. Petersson, and A. Nilsson, ”Chip integrated strategies for acoustic separation and manipulation of cells and particles,” Chemical Society Reviews, vol. 36, pp. 492-506, 2007.
[3] J. Friend and L. Y. Yeo, ”Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Reviews of Modern Physics, vol. 83, p. 647, 2011.
[4] J. Wu, ”Acoustical tweezers,” The Journal of the Acoustical Society of America, vol. 89, pp. 2140-2143, 1991.
[5] K. C. Neuman and A. Nagy, ”Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nature methods, vol. 5, pp. 491-505, 2008.
[6] H. A. Pohl, ”The motion and precipitation of suspensoids in divergent electric fields,” Journal of Applied Physics, vol. 22, pp. 869-871, 1951.
[7] B. Hammarström, Acoustic Trapping in Biomedical Research, 2014.
[8] T. Otsuka, K. Higuchi, and K. Seya, ”Consideration of sample dimension for ultrasonic levitation,” in Ultrasonics Symposium, 1990. Proceedings., IEEE 1990, 1990, pp. 1271-1274.
[9] J. Shi, X. Mao, D. Ahmed, A. Colletti, and T. J. Huang, ”Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 8, pp. 221-223, 2008.
[10] Y. Choe, J. W. Kim, K. K. Shung, and E. S. Kim, ”Microparticle trapping in an ultrasonic Bessel beam,” Applied physics letters, vol. 99, p. 233704, 2011.
[11] D. Baresch, J.-L. Thomas, and R. Marchiano, ”Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers,”
Physical review letters, vol. 116, p. 024301, 2016.
[12] J. Shi, D. Ahmed, X. Mao, S.-C. S. Lin, A. Lawit, and T. J. Huang, ”Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW),” Lab on a Chip, vol. 9, pp. 2890-2895, 2009.
[13] C. R. Courtney, C.-K. Ong, B. Drinkwater, P. Wilcox, C. Demore, S. Cochran, et al., ”Manipulation of microparticles using phase-controllable ultrasonic standing waves,” The Journal of the Acoustical Society of America, vol. 128, pp. EL195-EL199, 2010.
[14] F. Mitri, F. Garzon, and D. Sinha, ”Characterization of acoustically engineered polymer nanocomposite metamaterials using x-ray microcomputed tomography,” Review of Scientific Instruments, vol. 82, p. 034903, 2011.
[15] M.-S. Scholz, B. Drinkwater, and R. Trask, ”Ultrasonic assembly of anisotropic short fibre reinforced composites,” Ultrasonics, vol. 54, pp.
1015-1019, 2014.
[16] K. H. Lam, H. S. Hsu, Y. Li, C. Lee, A. Lin, Q. Zhou, et al., ”Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application,”
Biotechnology and bioengineering, vol. 110, pp. 881-886, 2013.
[17] F. Zheng, Y. Li, H.-S. Hsu, C. Liu, C. Tat Chiu, C. Lee, et al., ”Acoustic trapping with a high frequency linear phased array,” Applied physics letters, vol. 101,
p. 214104, 2012.
[18] Y. Li, C. Lee, R. Chen, Q. Zhou, and K. K. Shung, ”A feasibility study of in vivo applications of single beam acoustic tweezers,” Applied physics letters, vol. 105, p. 173701, 2014.
[19] D. Huang and E. Kim, ”Micromachined acoustic-wave liquid ejector,” Journal of microelectromechanical systems, vol. 10, pp. 442-449, 2001.
[20] C.-Y. Lee, W. Pang, S. C. Hill, H. Yu, and E. S. Kim, ”Airborne particle generation through acoustic ejection of particles-in-droplets,” Aerosol Science and Technology, vol. 42, pp. 832-841, 2008.
[21] B. Hadimioglu, E. Rawson, R. Lujan, M. Lim, J. Zesch, B. Khuri-Yakub, et al., ”High-efficiency Fresnel acoustic lenses,” in Ultrasonics Symposium, 1993, pp. 579-579.
[22] K. Dholakia, P. Reece, and M. Gu, ”Optical micromanipulation,” Chemical Society Reviews, vol. 37, pp. 42-55, 2008.
[23] G. T. Silva and A. L. Baggio, ”Designing single-beam multitrapping acoustical tweezers,” Ultrasonics, vol. 56, pp. 449-455, 2015.
[24] J. E. Lennard-Jones, ”Cohesion,” Proceedings of the Physical Society, vol. 43, p. 461, 1931.
[25] A. Hirose and K. E. Lonngren, Introduction to wave phenomena: WileyInterscience, 1985.
[26] G. K. Batchelor, An introduction to fluid dynamics: Cambridge university press, 2000.
[27] Y. Xia and G. M. Whitesides, ”Soft lithography,” Annual review of materials science, vol. 28, pp. 153-184, 1998
指導教授 陳世叡、黃衍任(Chen, Shih-Jui Hwang, Yean-Ren) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明