博碩士論文 104323075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.145.98.11
姓名 胡謙道(Chien-Tao Hu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 腰椎後融合手術之路徑規劃、螺釘植入導引與椎籠設計
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 脊椎是人體支撐最重要的組織,過度使用將會造成不同程度的損傷。其中,腰椎是整個脊椎承受壓力最大的區段,因此手術治療腰椎病變是常見的脊椎手術。微創腰椎手術的趨勢是以機器人手術導航系統來協助定位與穩固手術路徑方向,而最根本的螺釘植入路徑規劃是靠醫師的經驗作決定。但螺釘需要與固定桿進行固定配合,而目前已知的導航系統未見有在規劃植入路徑時有從力學角度考量固定桿與螺釘的最佳固定關係。又現行術中植入螺釘時通常使用金屬導線(K-wire)做引導,但容易因為患者的骨質密度低而導致導線刺穿錐體,傷到中樞神經或動脈血管,而脊椎融合用的椎籠則對於恢復或矯正患者的腰椎前彎結構有著重要的影響。因此本研究提出同步考慮螺釘與固定桿植入的路徑規劃、配合機器人路徑定位後的鑽孔及導引器械的設計、以及新椎籠的設計等。
本研究的路徑規劃是以CT影像建構3D脊椎模型並分割出單節椎骨,接著就理想的腰椎橢圓曲線形狀考量螺釘受力方向,以半自動的方法進行椎弓根路徑的規劃,並決定出固定桿與螺釘在椎體上方的適當空間擺放位置,希望能降低術後可能發生的螺釘鬆脫或固定桿斷裂問題。又設計一套配合機器人定位導槽的鑽孔器械組來取代金屬導線(K-wire)與夾附在棘突上的參考座標夾持器,後者的目的是免除額外傷口的問題。最後,根據後融合手術常用的椎體間植入物的功能需求,從機構設計上進行椎體設計的改善。
本研究的目的是希望提高醫師的手術品質與降低再次手術的風險,並提升機器人脊椎手術導航系統的功能性與應用價值。
摘要(英) The spine is the most important tissue for human body support. Excessive use will cause varying degrees of damage. The lumbar spine is the most stressed section of the entire spine, so surgical treatment of lumbar spine lesions is a common spine surgery. The trend of minimally invasive lumbar spine surgery is to use a robotic surgical navigation system to assist in positioning and stabilizing the direction of the surgical path, and the most fundamental screw implant path planning is determined by the experience of the surgeon. However, the screw needs to be fixed and matched with the fixation rod, and the currently known surgical navigation systems do not provide the path planning function that can plan the optimum fixation relationship between the fixation rod and the screws from the mechanics point of view. In addition, a metal wire (K-wire) is usually used as a guide for tapping and screw implantation in the current operation, but it is easy to cause the wire to pierce the body due to the low bone density of the patient, and damage the central nerve or arterial vessels. Moreover, the spinal cage for spinal fusion plays an important role on the restoration or correction of the patient′s lumbar anterior curvature structure. Therefore, this study proposes the integrated path planning of both screw and fixed rod implantation during path planning, the design of drilling and guiding equipment for use together with the robot path guidance sleeve, and the design of the new vertebral cage. The path planning in this study is to construct a 3D spine model with CT images and to segment each single vertebra. Then, based on the ideal lumbar elliptic curve shape and considering the external force direction of the screw, the pedicle path is planned by a semi-automatic method and determined. The fixed rod and screw should be placed in the appropriate space above the vertebral body, hoping to reduce the problem of screw loosening or fixation rod breakage that may occur after operation. A set of drilling equipment that cooperates with the positioning guide groove of the robot to replace the metal wire (K-wire) and the reference coordinate holder attached to the spinous process. The purpose of the latter is to avoid the problem of additional wounds. Finally, according to the functional requirements of intervertebral cages commonly used in posterior fusion surgery, a new mechanical design of intervertebral cages is proposed. The purpose of this research is to improve the surgeon′s operation quality and reduce the risk of surgicl revision, and to enhance the functionality and application value of the robotic spine surgery navigation system.
關鍵字(中) ★ 腰椎手術
★ 後融合術
★ 螺釘植入導引
★ 椎籠設計
關鍵字(英) ★ lumbar spine surgery
★ posterior fusion
★ screw implantation guide
★ vertebral cage design
論文目次 中文摘要 iv
Abstract v
目錄 vii
圖目錄 ix
第1章 緒論 - 1 -
1-1 研究背景 - 1 -
1-2 文獻回顧 - 2 -
1-3 論文架構 - 10 -
第2章 螺釘及固定桿路徑規劃 - 12 -
2-1 螺釘路徑規劃 - 12 -
2-1-1 分離椎骨節段 - 12 -
2-1-2 分離椎弓根區域 - 15 -
2-1-3 椎弓根路徑規劃 - 16 -
2-2 固定桿路徑規劃 - 18 -
2-2-1 螺釘初始位置與旋轉點 - 18 -
2-2-2 腰椎理想曲線建立 - 19 -
2-2-3 決定固定桿路徑與調整螺釘路徑 - 23 -
2-2-4 固定桿植入前處理 - 26 -
2-3 小結 - 27 -
第3章 術中器械與手術方法 - 29 -
3-1 螺釘植入前準備 - 29 -
3-2 無金屬導線(Wireless)的椎莖螺釘植入 - 31 -
3-2-1 器械設計與使用流程 - 31 -
3-2-2 套筒攻牙器合併動態參考框架安裝 - 34 -
3-3 椎間融合器 - 36 -
3-3-1 椎籠機構與植入器械設計 - 36 -
3-3-2 椎籠材料選用 - 39 -
3-4 小結 - 40 -
第4章 結論與未來展望 - 42 -
參考文獻 - 43 -
參考文獻 [1] Nachiket. "Global Surgical Robots for the Spine Industry Trend, Growth, Shares, Strategy and Forecasts 2016 to 2022." (accessed.
[2] L. Yu, X. Chen, A. Margalit, H. Peng, G. Qiu, and W. Qian, "Robot‐assisted vs freehand pedicle screw fixation in spine surgery–a systematic review and a meta‐analysis of comparative studies," The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 14, no. 3, p. e1892, 2018.
[3] D. P. Devito et al., "Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study," Spine, vol. 35, no. 24, pp. 2109-2115, 2010.
[4] M. Shoham et al., "Robotic assisted spinal surgery–from concept to clinical practice," Computer Aided Surgery, vol. 12, no. 2, pp. 105-115, 2007.
[5] K. Cahill and M. Wang, "Evaluating the accuracy of robotic assistance in spine surgery," Neurosurgery, vol. 71, no. 2, pp. N20-N21, 2012.
[6] S. C. Overley, S. K. Cho, A. I. Mehta, and P. M. Arnold, "Navigation and robotics in spinal surgery: where are we now?," Neurosurgery, vol. 80, no. 3S, pp. S86-S99, 2017.
[7] V. Kosmopoulos and C. Schizas, "Pedicle screw placement accuracy: a meta-analysis," Spine, vol. 32, no. 3, pp. E111-E120, 2007.
[8] T. Tjardes et al., "Image-guided spine surgery: state of the art and future directions," European spine journal, vol. 19, no. 1, pp. 25-45, 2010.
[9] A. R. Lanfranco, A. E. Castellanos, J. P. Desai, and W. C. Meyers, "Robotic surgery: a current perspective," Annals of surgery, vol. 239, no. 1, p. 14, 2004.
[10] J. Singh, E. R. Podolsky, A. E. Castellanos, and D. E. Stein, "Optimizing single port surgery: a case report and review of technique in colon resection," The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 7, no. 2, pp. 127-130, 2011.
[11] L. Lenfant, S. Kim, A. Aminsharifi, G. Sawczyn, and J. Kaouk, "Floating docking technique: a simple modification to improve the working space of the instruments during single-port robotic surgery," World Journal of Urology, vol. 39, no. 4, pp. 1299-1305, 2021.
[12] M. T. V. Gomes, A. M. N. Machado, S. Podgaec, and G. A. S. Barison, "Initial experience with single-port robotic hysterectomy," Einstein (Sao Paulo), vol. 15, no. 4, pp. 476-480, 2017.
[13] R. W. Dobbs, W. R. Halgrimson, S. Talamini, H. T. Vigneswaran, J. O. Wilson, and S. Crivellaro, "Single-port robotic surgery: the next generation of minimally invasive urology," World journal of urology, vol. 38, no. 4, pp. 897-905, 2020.
[14] L. F. Grochola, C. Soll, A. Zehnder, R. Wyss, P. Herzog, and S. Breitenstein, "Robot-assisted versus laparoscopic single-incision cholecystectomy: results of a randomized controlled trial," Surgical endoscopy, vol. 33, no. 5, pp. 1482-1490, 2019.
[15] F. Shweikeh et al., "Robotics and the spine: a review of current and ongoing applications," Neurosurgical focus, vol. 36, no. 3, p. E10, 2014.
[16] S. R. Kantelhardt, R. Martinez, S. Baerwinkel, R. Burger, A. Giese, and V. Rohde, "Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement," European Spine Journal, vol. 20, no. 6, pp. 860-868, 2011.
[17] S. R. Schroerlucke et al., "Complication rate in robotic-guided vs fluoro-guided minimally invasive spinal fusion surgery: report from MIS refresh prospective comparative study," The Spine Journal, vol. 17, no. 10, pp. S254-S255, 2017.
[18] M. D’Souza, J. Gendreau, A. Feng, L. H. Kim, A. L. Ho, and A. Veeravagu, "Robotic-assisted spine surgery: history, efficacy, cost, and future trends," Robotic Surgery: Research and Reviews, vol. 6, p. 9, 2019.
[19] X. Hu, D. D. Ohnmeiss, and I. H. Lieberman, "Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients," European Spine Journal, vol. 22, no. 3, pp. 661-666, 2013.
[20] D. J. Podolsky, A. R. Martin, C. M. Whyne, E. M. Massicotte, M. R. Hardisty, and H. J. Ginsberg, "Exploring the role of 3-dimensional simulation in surgical training: feedback from a pilot study," Clinical Spine Surgery, vol. 23, no. 8, pp. e70-e74, 2010.
[21] N.-F. Tian et al., "Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies," European Spine Journal, vol. 20, no. 6, pp. 846-859, 2011.
[22] X. Le et al., "Robot-assisted versus fluoroscopy-assisted cortical bone trajectory screw instrumentation in lumbar spinal surgery: a matched-cohort comparison," World neurosurgery, vol. 120, pp. e745-e751, 2018.
[23] J.-Q. Wang et al., "Percutaneous sacroiliac screw placement: a prospective randomized comparison of robot-assisted navigation procedures with a conventional technique," Chinese medical journal, vol. 130, no. 21, p. 2527, 2017.
[24] N. Lonjon, E. Chan-Seng, V. Costalat, B. Bonnafoux, M. Vassal, and J. Boetto, "Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis," European Spine Journal, vol. 25, no. 3, pp. 947-955, 2016.
[25] N. Keric et al., "Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws," Neurosurgical focus, vol. 42, no. 5, p. E11, 2017.
[26] H.-J. Kim et al., "Biomechanical advantages of robot-assisted pedicle screw fixation in posterior lumbar interbody fusion compared with freehand technique in a prospective randomized controlled trial—perspective for patient-specific finite element analysis," The Spine Journal, vol. 17, no. 5, pp. 671-680, 2017.
[27] W. Sukovich, S. Brink‐Danan, and M. Hardenbrook, "Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist®," The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 2, no. 2, pp. 114-122, 2006.
[28] J. M. Hicks, A. Singla, F. H. Shen, and V. Arlet, "Complications of pedicle screw fixation in scoliosis surgery: a systematic review," Spine, vol. 35, no. 11, pp. E465-E470, 2010.
[29] Y. Barzilay, M. Liebergall, A. Fridlander, and N. Knoller, "Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres," The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 2, no. 2, pp. 146-153, 2006.
[30] D.-Y. Kim, S.-H. Lee, S. K. Chung, and H.-Y. Lee, "Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation," Spine, vol. 30, no. 1, pp. 123-129, 2005.
[31] N. Bronsard et al., "Comparison between percutaneous and traditional fixation of lumbar spine fracture: intraoperative radiation exposure levels and outcomes," Orthopaedics & Traumatology: Surgery & Research, vol. 99, no. 2, pp. 162-168, 2013.
[32] N. Amoretti et al., "Percutaneous screw fixation of a vertebral pedicle fracture under CT-guidance: A new technique," European journal of radiology, vol. 81, no. 3, pp. 591-593, 2012.
[33] T. M. Heintel et al., "How safe is minimally invasive pedicle screw placement for treatment of thoracolumbar spine fractures?," European Spine Journal, vol. 26, no. 5, pp. 1515-1524, 2017.
[34] N. Moussazadeh, D. G. Rubin, L. McLaughlin, E. Lis, M. H. Bilsky, and I. Laufer, "Short-segment percutaneous pedicle screw fixation with cement augmentation for tumor-induced spinal instability," The Spine Journal, vol. 15, no. 7, pp. 1609-1617, 2015.
[35] T. M. Chapman, D. J. Blizzard, and C. R. Brown, "CT accuracy of percutaneous versus open pedicle screw techniques: a series of 1609 screws," European spine journal, vol. 25, no. 6, pp. 1781-1786, 2016.
[36] P. J. Belmont Jr, W. R. Klemme, A. Dhawan, and D. W. Polly Jr, "In vivo accuracy of thoracic pedicle screws," Spine, vol. 26, no. 21, pp. 2340-2346, 2001.
[37] R. J. Mobbs and D. A. Raley, "Complications with K-wire insertion for percutaneous pedicle screws," Clinical Spine Surgery, vol. 27, no. 7, pp. 390-394, 2014.
[38] K. Ishii et al., "A novel percutaneous guide wire (S-Wire) for percutaneous pedicle screw insertion: its development, efficacy, and safety," Surgical innovation, vol. 22, no. 5, pp. 469-473, 2015.
[39] D. A. Raley and R. J. Mobbs, "Retrospective computed tomography scan analysis of percutaneously inserted pedicle screws for posterior transpedicular stabilization of the thoracic and lumbar spine: accuracy and complication rates," Spine, vol. 37, no. 12, pp. 1092-1100, 2012.
[40] H. M. Macdonald, K. K. Nishiyama, J. Kang, D. A. Hanley, and S. K. Boyd, "Age‐related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population‐based HR‐pQCT study," Journal of Bone and Mineral Research, vol. 26, no. 1, pp. 50-62, 2011.
[41] Y. R. Rampersaud, D. A. Simon, and K. T. Foley, "Accuracy requirements for image-guided spinal pedicle screw placement," Spine, vol. 26, no. 4, pp. 352-359, 2001.
[42] T. Hamasaki, N. Tanaka, J. Kim, M. Okada, M. Ochi, and W. C. Hutton, "Pedicle screw augmentation with polyethylene tape: a biomechanical study in the osteoporotic thoracolumbar spine," Clinical Spine Surgery, vol. 23, no. 2, pp. 127-132, 2010.
[43] H. Paik, D. G. Kang, R. A. Lehman Jr, R. E. Gaume, D. V. Ambati, and A. E. Dmitriev, "The biomechanical consequences of rod reduction on pedicle screws: should it be avoided?," The Spine Journal, vol. 13, no. 11, pp. 1617-1626, 2013.
[44] X. L. Chong, A. Kumar, E. W. R. Yang, A.-K. Kaliya-Perumal, and J. Y.-L. Oh, "Incidence of pedicle breach following open and minimally invasive spinal instrumentation: A postoperative CT analysis of 513 pedicle screws applied under fluoroscopic guidance," BioMedicine, vol. 10, no. 2, p. 30, 2020.
[45] N. Acar, A. Karakasli, A. A. Karaarslan, M. H. Ozcanhan, F. Ertem, and M. Erduran, "The mechanical effect of rod contouring on rod-screw system strength in spine fixation," Journal of Korean Neurosurgical Society, vol. 59, no. 5, p. 425, 2016.
[46] E. B. Harris, P. Massey, J. Lawrence, J. Rihn, A. Vaccaro, and D. G. Anderson, "Percutaneous techniques for minimally invasive posterior lumbar fusion," Neurosurgical focus, vol. 25, no. 2, p. E12, 2008.
[47] X. Li et al., "Marked Guidewire Technique Prevents Complications of Percutaneous Pedicle Screws and Precisely Controls Depth," World neurosurgery, vol. 118, pp. 81-85, 2018.
[48] X. Li, F. Zhang, W. Zhang, X. Shang, J. Han, and P. Liu, "A new method to precisely control the depth of percutaneous screws into the pedicle by counting the rotation number of the screw with low radiation exposure," European Spine Journal, vol. 26, no. 3, pp. 750-753, 2017.
[49] J. L. Stambough, F. El Khatib, A. M. Genaidy, and R. L. Huston, "Strength and fatigue resistance of thoracolumbar spine implants: an experimental study of selected clinical devices," Journal of spinal disorders, vol. 12, no. 5, pp. 410-414, 1999.
[50] D.-Y. Cho, W.-Y. Lee, and P.-C. Sheu, "Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation," Neurosurgery, vol. 53, no. 6, pp. 1354-1361, 2003.
[51] K. E. Ponnusamy, S. Iyer, G. Gupta, and A. J. Khanna, "Instrumentation of the osteoporotic spine: biomechanical and clinical considerations," The Spine Journal, vol. 11, no. 1, pp. 54-63, 2011.
[52] J. S. Vanichkachorn, A. R. Vaccaro, M. J. Cohen, and J. M. Cotler, "Potential large vessel injury during thoracolumbar pedicle screw removal: a case report," Spine, vol. 22, no. 1, pp. 110-113, 1997.
[53] R. M. Randall, M. Silverstein, and R. Goodwin, "Review of pediatric spondylolysis and spondylolisthesis," Sports medicine and arthroscopy review, vol. 24, no. 4, pp. 184-187, 2016.
[54] D. K. Resnick et al., "Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 9: fusion in patients with stenosis and spondylolisthesis," Journal of Neurosurgery: Spine, vol. 2, no. 6, pp. 679-685, 2005.
[55] G. M. Malham, B. Goss, and C. Blecher, "Percutaneous pedicle screw accuracy with dynamic electromyography: the early experience of a traditionally open spine surgeon," Journal of Neurological Surgery Part A: Central European Neurosurgery, vol. 76, no. 04, pp. 303-308, 2015.
[56] J. A. Soriano-Sánchez et al., "Fluoroscopy-guided pedicle screw accuracy with a mini-open approach: a tomographic evaluation of 470 screws in 125 patients," International journal of spine surgery, vol. 9, 2015.
[57] N. I. o. Health, "NIH consensus development panel on osteoporosis prevention, diagnosis, and therapy, March 7-29, 2000: highlights of the conference," South Med J, vol. 94, no. 6, pp. 569-573, 2001.
[58] T. Gangwar, J. Calder, T. Takahashi, J. E. Bechtold, and D. Schillinger, "Robust variational segmentation of 3D bone CT data with thin cartilage interfaces," Medical image analysis, vol. 47, pp. 95-110, 2018.
[59] T. J. Janik, D. D. Harrison, R. Cailliet, S. J. Troyanovich, and D. E. Harrison, "Can the sagittal lumbar curvature be closely approximated by an ellipse?," Journal of orthopaedic research, vol. 16, no. 6, pp. 766-770, 1998.
[60] T. F. Chan and L. A. Vese, "Active contours without edges," IEEE Transactions on image processing, vol. 10, no. 2, pp. 266-277, 2001.
[61] T.-H. Kuo, J. Fang, and R. Lin, "Development of guiding templates for pedicle screw insertion in spine surgery," in The 8th Combined Congress of the Spine and Pediatric Sections, Asia Pacific Orthopaedic Association. Gifu, Japan, 2011.
[62] S.-S. Wu, W. T. Edwards, and H. A. Yuan, "Stiffness between different directions of transpedicular screws and vertebra," Clinical Biomechanics, vol. 13, no. 1, pp. S1-S8, 1998.
[63] K. Matsukawa and Y. Yato, "Lumbar pedicle screw fixation with cortical bone trajectory: A review from anatomical and biomechanical standpoints," Spine surgery and related research, vol. 1, no. 4, pp. 164-173, 2017.
[64] S. J. Troyanovich, R. Cailliet, T. J. Janik, D. D. Harrison, and D. E. Harrison, "Radiographic mensuration characteristics of the sagittal lumbar spine from a normal population with a method to synthesize prior studies of lordosis," Journal of spinal disorders, vol. 10, no. 5, pp. 380-386, 1997.
[65] C. Barrey and A. Darnis, "Current strategies for the restoration of adequate lordosis during lumbar fusion," World journal of orthopedics, vol. 6, no. 1, p. 117, 2015.
[66] D. E. Harrison, D. D. Harrison, R. Cailliet, T. J. Janik, and B. Holland, "Radiographic analysis of lumbar lordosis: centroid, Cobb, TRALL, and Harrison posterior tangent methods," Spine, vol. 26, no. 11, pp. e235-e242, 2001.
[67] J. Lazennec et al., "Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain," European Spine Journal, vol. 9, no. 1, pp. 47-55, 2000.
[68] Y. Liang et al., "Clinical outcomes and sagittal alignment of single-level unilateral instrumented transforaminal lumbar interbody fusion with a 4 to 5-year follow-up," European Spine Journal, vol. 24, no. 11, pp. 2560-2566, 2015.
[69] F. J. Schwab, V. A. Smith, M. Biserni, L. Gamez, J.-P. C. Farcy, and M. Pagala, "Adult scoliosis: a quantitative radiographic and clinical analysis," Spine, vol. 27, no. 4, pp. 387-392, 2002.
[70] M. Alimi et al., "Expandable polyaryl-ether-ether-ketone spacers for interbody distraction in the lumbar spine," Global spine journal, vol. 5, no. 3, pp. 169-178, 2015.
[71] A. H. Hawasli, J. M. Khalifeh, A. Chatrath, C. K. Yarbrough, and W. Z. Ray, "Minimally invasive transforaminal lumbar interbody fusion with expandable versus static interbody devices: radiographic assessment of sagittal segmental and pelvic parameters," Neurosurgical focus, vol. 43, no. 2, p. E10, 2017.
[72] C. Struwe et al., "A novel PLIF PEEK interbody cage with an impactionless insertion technology: A case series with a mid-term follow up of three years," Technology and Health Care, vol. 25, no. 5, pp. 949-957, 2017.
[73] E. Chong, M. H. Pelletier, R. J. Mobbs, and W. R. Walsh, "The design evolution of interbody cages in anterior cervical discectomy and fusion: a systematic review," BMC musculoskeletal disorders, vol. 16, no. 1, pp. 1-11, 2015.
[74] S. Najeeb, Z. Khurshid, J. P. Matinlinna, F. Siddiqui, M. Z. Nassani, and K. Baroudi, "Nanomodified peek dental implants: Bioactive composites and surface modification—A review," International journal of dentistry, vol. 2015, 2015.
[75] P. J. Rao, M. H. Pelletier, W. R. Walsh, and R. J. Mobbs, "Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration," Orthopaedic surgery, vol. 6, no. 2, pp. 81-89, 2014.
[76] Y. Chen et al., "Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up," European Spine Journal, vol. 22, no. 7, pp. 1539-1546, 2013.
[77] Y.-C. Chou et al., "Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts," Journal of Clinical Neuroscience, vol. 15, no. 11, pp. 1240-1245, 2008.
[78] C.-C. Niu, J.-C. Liao, W.-J. Chen, and L.-H. Chen, "Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages," Clinical Spine Surgery, vol. 23, no. 5, pp. 310-316, 2010.
[79] I. O. Karikari et al., "Impact of subsidence on clinical outcomes and radiographic fusion rates in anterior cervical discectomy and fusion: a systematic review," Clinical Spine Surgery, vol. 27, no. 1, pp. 1-10, 2014.
[80] I. Noordhoek, M. T. Koning, W. C. Jacobs, and C. L. Vleggeert-Lankamp, "Incidence and clinical relevance of cage subsidence in anterior cervical discectomy and fusion: a systematic review," Acta neurochirurgica, vol. 160, no. 4, pp. 873-880, 2018.
[81] M. Kashii, K. Kitaguchi, T. Makino, and T. Kaito, "Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery," Journal of Orthopaedic Science, vol. 25, no. 4, pp. 565-570, 2020.
[82] S. M. Kurtz and J. N. Devine, "PEEK biomaterials in trauma, orthopedic, and spinal implants," Biomaterials, vol. 28, no. 32, pp. 4845-4869, 2007.
[83] J. J. Schimmel, M. S. Poeschmann, P. P. Horsting, D. H. Schönfeld, J. van Limbeek, and P. W. Pavlov, "PEEK cages in lumbar fusion: mid-term clinical outcome and radiologic fusion," Clinical spine surgery, vol. 29, no. 5, pp. E252-E258, 2016.
[84] E. Behrbalk, O. Uri, R. M. Parks, R. Musson, R. C. C. Soh, and B. M. Boszczyk, "Fusion and subsidence rate of stand alone anterior lumbar interbody fusion using PEEK cage with recombinant human bone morphogenetic protein-2," European Spine Journal, vol. 22, no. 12, pp. 2869-2875, 2013.
[85] M.-C. Kim, H.-T. Chung, J.-L. Cho, D.-J. Kim, and N.-S. Chung, "Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion," Clinical Spine Surgery, vol. 26, no. 2, pp. 87-92, 2013.
[86] T. V. Le et al., "Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion," Spine, vol. 37, no. 14, pp. 1268-1273, 2012.
[87] J. Gallo, M. Holinka, and C. S. Moucha, "Antibacterial surface treatment for orthopaedic implants," International journal of molecular sciences, vol. 15, no. 8, pp. 13849-13880, 2014.
[88] H. Kakinuma et al., "Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate‐bonding ability of inositol phosphate: processing, material characterization, cytotoxicity, and antibacterial properties," Journal of Biomedical Materials Research Part A, vol. 103, no. 1, pp. 57-64, 2015.
[89] L. De Bartolo, S. Morelli, A. Bader, and E. Drioli, "The influence of polymeric membrane surface free energy on cell metabolic functions," Journal of Materials Science: Materials in Medicine, vol. 12, no. 10, pp. 959-963, 2001.
[90] O. Noiset, Y.-J. Schneider, and J. Marchand-Brynaert, "Fibronectin adsorption or/and covalent grafting on chemically modified PEEK film surfaces," Journal of Biomaterials Science, Polymer Edition, vol. 10, no. 6, pp. 657-677, 1999.
[91] O. Nemoto, T. Asazuma, Y. Yato, H. Imabayashi, H. Yasuoka, and A. Fujikawa, "Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation," European Spine Journal, vol. 23, no. 10, pp. 2150-2155, 2014.
[92] S. Seaman, P. Kerezoudis, M. Bydon, J. C. Torner, and P. W. Hitchon, "Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature," Journal of Clinical Neuroscience, vol. 44, pp. 23-29, 2017.
[93] F. Cuzzocrea et al., "PEEK versus metal cages in posterior lumbar interbody fusion: a clinical and radiological comparative study," Musculoskeletal surgery, vol. 103, no. 3, pp. 237-241, 2019.
[94] R. J. Mobbs, K. Phan, Y. Assem, M. Pelletier, and W. R. Walsh, "Combination Ti/PEEK ALIF cage for anterior lumbar interbody fusion: early clinical and radiological results," Journal of Clinical Neuroscience, vol. 34, pp. 94-99, 2016.
[95] M. Rickert et al., "Transforaminal lumbar interbody fusion using polyetheretherketone oblique cages with and without a titanium coating: a randomised clinical pilot study," The bone & joint journal, vol. 99, no. 10, pp. 1366-1372, 2017.
[96] W. R. Walsh, M. H. Pelletier, C. Christou, J. He, F. Vizesi, and S. D. Boden, "The in vivo response to a novel Ti coating compared with polyether ether ketone: evaluation of the periphery and inner surfaces of an implant," The Spine Journal, vol. 18, no. 7, pp. 1231-1240, 2018.
[97] B. C. Cheng, S. Koduri, C. A. Wing, N. Woolery, D. J. Cook, and R. C. Spiro, "Porous titanium-coated polyetheretherketone implants exhibit an improved bone–implant interface: an in vitro and in vivo biochemical, biomechanical, and histological study," Medical Devices (Auckland, NZ), vol. 11, p. 391, 2018.
[98] P. C. Celestre, J. R. Dimar 2nd, and S. D. Glassman, "Spinopelvic parameters: lumbar lordosis, pelvic incidence, pelvic tilt, and sacral slope: what does a spine surgeon need to know to plan a lumbar deformity correction?," Neurosurgery Clinics of North America, vol. 29, no. 3, pp. 323-329, 2018.
指導教授 曾清秀(Ching-Shiow Tseng) 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明