博碩士論文 104323079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:13.59.136.170
姓名 宋培溥(PEI-PU SONG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 實體網格建構對於塑膠光學元件模流分析 之影響探討★ 螺槳葉片逆向工程CAD模型重建與檢測
★ 電腦輔助紋理影像辨識與點資料視覺化研究★ 渦輪轉子CAD模型重建、多軸加工路徑模擬與誤差分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在射出成型產業中,模流分析(Mold flow analysis)的應用已經相當普遍,在模流分析前,需先將CAD模型轉為實體網格模型,以提供求解器進行計算。薄殼件模型是射出成型中常見的模型,且模型上通常有許多凸起特徵。傳統上,使用者會對薄殼件建立四面體網格,因為其實體網格可以自動建構,且可應用於複雜幾何的模型。然而,近年來隨著對模流分析精度要求的提升,需要使用品質與精度更高的三角柱網格或六面體網格,相關網格之建構方式,主要以手動方式建構為主。本研究的目的是開發應用於薄殼件模型上的特徵辨識與特徵分解演算法,以輔助三角柱網格與六面體網格的建構。在本研究所提出特徵辨識的演算法中,包含了孔洞的辨識與凸起特徵的辨識。其中,凸起特徵又可分為肋特徵、管特徵、柱特徵等多種類型。本研究會先在CAD模型上計算一些前處理資料或是辨識Fillet與Loop等資料。接著,再利用這些資料進一步辨識出孔洞與凸起特徵。而關於特徵分解的演算法,本研究會使用特徵辨識後所記錄的各種資訊,計算出每個特徵在模型上的特徵區塊。特徵區塊由多個封閉的輪廓組成,可應用於輔助實體網格的建立。本研究最主要的貢獻為辨識了多種不同類型的特徵,包含孔洞、肋特徵、管特徵、柱特徵、對稱凸起特徵等。這些特徵記錄了自身的組成面、邊界條件、相鄰的特徵等資訊。另一方面,本研究也將各種類型的凸起特徵分解為形狀規則的特徵區塊。特徵區塊記錄了多個封閉的輪廓,而每個輪廓也記錄了與原始模型相對應的資料。
摘要(英) In injection molding, the application of mold flow analysis has become more and more popular. In mold flow analysis, a computer aided design (CAD) model must be converted into sloid meshes so that the solver can perform the required analysis. Thin-shell plastic parts are very common in injection molding. A thin shell part generally involves a thin shell and protrusion features on its inside. Tetrahedral meshes are conventionally used for thin-shell parts owing to the ease for automatic generation and applicability for complex models. Recently, with the increasing on the accuracy requirement, it is getting popular to employ prismatic and hexahedral meshes in mold flow analysis. However, generating prismatic and hexahedral meshes requires the generation of assistant planes and the splitting of the model, which are typically done manually. The purpose of this study is to develop feature recognition and feature decomposition algorithms for thin-shell plastic parts for automating the construction of prismatic and hexahedral meshes. The proposed recognition algorithm includes hole and protrusion recognition. The protrusion features can be divided into the following types: rib, tube, column and symmetric extrusion. In the proposed algorithm, firstly, some pre-processing data and basic features (such as fillet and loop) must be computed. Then, holes and protrusion features are recognized by using the pre-processing data, fillets and loop data. In feature decomposition, feature regions are computed by using the data from various types of protrusion features. A feature region is essentially composed of multiple closed contours. An individual decomposition algorithm is developed for each type of protrusion features to yield the closed contours corresponding to each feature region. The primary contributions of this study are: firstly, various types of features are recognized, including hole, rib, tube, column and symmetrical feature. The composition faces, boundary conditions and related features for each of them are recorded. Secondly, several decomposition algorithms are developed to decompose protrusion features into feature regions, each of which is regular in shape and can be meshed with structured-type mesh. Multiple closed contours of each feature region and the topological data of these contours on the CAD model are also recorded.
關鍵字(中) ★ 特徵辨識
★ 特徵分解
★ 結構化網格
★ B-rep
關鍵字(英) ★ Feature recognition
★ Feature decomposition
★ Structured Mesh
★ B-rep
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XVII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.2.1 特徵辨識前置處理相關文獻 4
1.2.2 特徵辨識相關文獻 6
1.2.3 特徵分解之相關文獻 10
1.2.4 實體網格建構之相關文獻 14
1.3 研究目的 15
1.4 研究方法 18
1.4.1 CAD資料前處理 18
1.4.2 特徵辨識 20
1.4.3 特徵分解 20
1.4.4 實體網格建構 21
1.5 論文架構 21
第二章 特徵辨識前處理資料計算 23
2.1 前言 23
2.2 B-rep結構簡介 23
2.3 邊屬性與分群資料計算 25
2.3.1 邊分群計算 25
2.3.2 邊屬性計算 25
2.4 面屬性與分群資料計算 30
2.4.1 面分群計算 30
2.4.2 面屬性計算 32
2.5 Fillet辨識 34
2.6 Loop辨識 39
第三章 薄殼件孔洞辨識技術 41
3.1 前言 41
3.2 孔洞的組成面與分類 41
3.3 孔洞辨識整體流程說明 43
3.4 孔洞辨識演算法 46
3.4.1 搜尋孔洞的組成面 46
3.4.2 孔洞分類 52
3.4.3 計算孔洞相鄰關係 54
3.4.4 計算階梯孔與複雜孔結構 54
3.5 孔洞的資料紀錄 58
3.6 孔洞的辨識結果分析 58
3.7 模具上之孔洞辨識與簡化技術 67
3.7.1 單一CAD模型之孔洞辨識 69
3.7.2 多個CAD模型之孔洞關聯性計算 71
3.7.3 檢測需保留之孔洞 76
3.7.4 簡化不需要之孔洞 78
3.8 模具上之孔洞辨識與簡化結果分析 81
第四章 薄殼件凸起特徵辨識技術 87
4.1 前言 87
4.2 凸起特徵的組成面與分類 90
4.3 凸起特徵辨識整體流程說明 93
4.4 凸起特徵辨識演算法 93
4.4.1 內外面辨識 95
4.4.2 輔助面辨識 100
4.4.3 凸起面計算與分群 104
4.4.4 凸起特徵分類 108
4.5 凸起特徵資料紀錄 133
4.6 凸起特徵辨識之結果說明 135
第五章 薄殼件凸起特徵分解技術 137
5.1 前言 137
5.2 凸起特徵區塊相關名詞介紹 139
5.3 凸起特徵分解整體流程說明 143
5.4 凸起特徵分解演算法 145
5.4.1 凸起特徵結構計算 145
5.4.2 計算特徵關聯性 148
5.4.3 計算特徵區塊 153
5.5 凸起特徵分解之結果說明 182
第六章 特徵辨識與分解之結果分析與討論 185
6.1 前言 185
6.2 凸起特徵辨識結果分析 186
6.2.1 凸起特徵辨識整體情況 186
6.2.2 各種特徵之辨識情況 192
6.2.3 凸起特徵辨識之失敗案例 197
6.3 凸起特徵分解結果分析 197
6.3.1 凸起特徵分解整體情況 200
6.3.2 各種特徵之特徵區塊 200
6.3.3 凸起特徵區塊計算之失敗案例 215
6.4 凸起特徵區塊之網格化與模流分析 215
6.4.1 凸起特徵區塊之網格化流程 218
6.4.2 凸起特徵區塊之網格品質與模流分析探討 220
第七章 結論與未來展望 228
7.1 結論 228
7.2 未來展望 231
參考文獻 234
參考文獻 [1] Moldex3D, Website: http://www.moldex3d.com/en/, Accessed 4 June 2021.
[2] S. E. Benzley, P. Ernest, M. Karl, C. Brett and S. Greg, “A comparison of all-hexahedral and all-tetrahedral finite element meshes for elastic and elasto-plastic analysis”, Proceedings of 4th International Meshing Roundtable, Sandia National Laboratories, Vol. 17, pp. 179-191, 1995.
[3] A. O. Cifuentes and A. Kalbag, “A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis”, Finite Elements in Analysis and Design, Vol. 12, pp. 313-318, 1992.
[4] T. A. Burkhart, D. M. Andrews and C. E. Dunning, “Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue”, Journal of Biomechanics, Vol. 46, No. 9, pp. 1477-1488, 2013.
[5] A. Ruggiero, R. D’Amato and S. Affatato, “Comparison of meshing strategies in THR finite element modelling”, Materials, Vol. 12, No.14, pp. 2332-2342, 2019.
[6] Rhinoceros, Website: http://www.rhino3d.com, Accessed 4 June 2021.
[7] OpenNURBS, Website: http://www.rhino3d.com/tw/opennurbs, Accessed 4 June 2021.
[8] L. D. Floriani, S. Ansaldi and B. Falcidieno, “Geometric modeling of solid objects by using a face adjacency graph representation”, ACM SIGGRAPH Computer Graphics, Vol. 19, No. 3, pp. 131-139, 1985.
[9] S. Joshi and T. C. Chang, “Graph-based heuristics for recognition of machined features from a 3D solid model”, Computer-Aided Design, Vol. 20, No. 2, pp. 58-66, 1988.
[10] Y. G. Li, Y. F. Ding, W. P. Mou and H. Guo, “Feature recognition technology for aircraft structural parts based on a holistic attribute adjacency graph”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 224, No. 2, pp. 271-278, 2010.
[11] Y. Li, W. Wang, X. Liu and Y. Ma, “Definition and recognition of rib features in aircraft structural part”, International Journal of Computer Integrated Manufacturing, Vol. 27, No. 1, pp. 1-19, 2014.
[12] K. Chung, K. Lee and T. Kim, “Recognition of pass features for automatic parting surface generation in injection moulds”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 216, No. 5, pp. 783-796, 2002.
[13] X. Zhang, J. Wang, K. Yamazaki and M. Mori, “A surface based approach to recognition of geometric features for quality freeform surface machining”, Computer-Aided Design, Vol. 36, No. 8, pp. 735-744, 2004.
[14] S. S. Liu and R. Gadh, “Automatic hexahedral mesh generation by recursive convex and swept volume decomposition”, 6th International Meshing Roundtable, Sandia National Laboratories, pp. 217-231, 1997.
[15] Y. Lu, R. Gadh and T. J. Tautges, “Feature based hex meshing methodology: feature recognition and volume decomposition”, Computer-Aided Design, Vol. 33, No. 3, pp. 221-232, 2001.
[16] Y. Zhang, X. Luo and Y. Zhao, “An approach to the automatic recognition of boolean decomposition loops for swept volume decomposition”, 25th International Meshing Roundtable, Washington DC, U.S.A., pp. 26-30, 2016.
[17] B. Babic, N. Nesic and Z. Miljkovic, “A review of automated feature recognition with rule-based pattern recognition”, Computers in industry, Vol. 59, No. 4, pp. 321-337, 2008.
[18] A. Thakur, A. G. Banerjee and S. K. Gupta, “A survey of CAD model simplification techniques for physics-based simulation applications”, Computer-Aided Design, Vol. 41, No. 2, pp. 65-80, 2009.
[19] A. K. Verma and S. Rajotia, “A review of machining feature recognition methodologies”, International Journal of Computer Integrated Manufacturing, Vol. 23, No. 4, pp. 353-368, 2010.
[20] J. Han, M. Pratt and W. C. Regli, “Manufacturing feature recognition from solid models: a status report”, Transactions on Robotics and Automation, Vol. 16, No. 6, pp. 782-796, 2000.
[21] R. Zbiciak and C. Grabowik, “Feature recognition methods review”, In 1st Renewable Energy Sources-Research and Business, pp. 605-615, 2016.
[22] M. Sadaiah, D. R. Yadav, P. V. Mohanram and P. Radhakrishnan, “A generative computer-aided process planning system for prismatic components”, The International Journal of Advanced Manufacturing Technology, Vol. 20, No. 10, pp. 709-719, 2002.
[23] J. Han and I. Han, “Manufacturable feature recognition and its integration with process planning”, In Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, pp. 108-118, 1999.
[24] S. Venkataraman and M. Sohoni, “Blend recognition algorithm and applications”, Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 99-108, 2001.
[25] X. Cui, S. Gao and G. Zhou, “An efficient algorithm for recognizing and suppressing blend features”, Computer-Aided Design and Applications, Vol. 1, No. 1-4, pp. 421-428, 2004.
[26] T. J. Tautges, “Automatic detail reduction for mesh generation applications”, 10th International Meshing Roundtable. Sandia National Laboratories, 2001.
[27] J. Li, G. Tong, D. Shi, M. Geng, H. Zhu and I. Hagiwara, “Automatic small blend recognition from B-rep models for analysis”, Engineering with Computers, Vol. 25, No. 3, pp. 279-285, 2009.
[28] A. F Zubair and M. S. Abu Mansor, “Automatic feature recognition of chamfer and fillet for turning part model by volume decomposition method”, Journal of Mechanical Engineering, No. 2, p.p. 204-216, 2018.
[29] P. S. Kataraki and M. S. A. Mansor, “A rule based method to auto-recognize fillet features of B-rep mill parts”, In Engineering Applications for New Materials and Technologies, pp. 105-114, 2018.
[30] F. Tian, X. Tian, J. Geng, Z. Li and Z. Zhang, “A hybrid interactive feature recognition method based on lightweight model”, In 2010 International Conference on Measuring Technology and Mechatronics Automation, Vol. 1, pp. 113-117, 2010.
[31] Y. Wang, R. Liu, F. Li, S. Endo, T. Baba and Y. Uehara, “An effective hole detection method for 3D models”, In 2012 Proceedings of the 20th European Signal Processing Conference, pp. 1940-1944, 2012.
[32] C. F. Tan, N. Ismail, S.V. Wong, S. Sulaiman and M. R. Osman, “Development of step hole recognition system for computer aided process planning”, Jurnal Teknologi, Vol. 43, pp. 73-86, 2005.
[33] J. Li, L. Sun, J. Peng, J. Du and L. Fan, “Automatic small depression feature recognition from solid B-rep models for meshing”, In 2011 International Conference on Electrical and Control Engineering, pp. 4386-4389, 2011.
[34] E. S. A. Nasr and A. K. Kamrani, “A new methodology for extracting manufacturing features from CAD system”, Computers & Industrial Engineering, Vol 51, No. 3, pp. 389-415, 2006.
[35] Caddoctor, Website: https://www.moldex3d.com/products/software/
moldex3d/solution-add-on/caddoctor/, Accessed 4 June 2021.
[36] H. Zhu, Y. Shao, Y. Liu and J. Zhao. “Automatic hierarchical mid-surface abstraction of thin-walled model based on rib decomposition”, Advances in Engineering Software, Vol. 97, pp. 60-71, 2016.
[37] H. L. Lockett and M. D. Guenov, “Graph-based feature recognition for injection moulding based on a mid-surface approach” Computer-Aided Design, Vol 37, No. 2, pp. 251-262, 2005.
[38] L. Sun, C. M. Tierney, C. G. Armstrong and T. T. Robinson. “Automatic decomposition of complex thin walled CAD models for hexahedral dominant meshing”, Procedia Engineering, Vol. 163, pp. 225-237, 2016.
[39] L. Sun, C. M. Tierney, C. G. Armstrong and T. T. Robinson. “An enhanced approach to automatic decomposition of thin-walled components for hexahedral-dominant meshing”, Engineering with Computers, Vol. 34, No. 3, pp. 431-447, 2018.
[40] F. Boussuge, J.C. Léon, S. Hahmann and L. Fine, “Extraction of generative processes from B-Rep shapes and application to idealization transformations”, Computer-Aided Design, Vol. 46, pp. 79-89, 2014.
[41] F. Boussuge, J.C. Léon, S. Hahmann and L. Fine, “Idealized models for FEA derived from generative modeling processes based on extrusion primitives”, Engineering with Computers, Vol. 31, No. 3, 513-527, 2015.
[42] Y. H. Kulkarni, A. Sahasrabudhe and M. Kale, “Topological validation of midsurface computed from sheet metal part”, Computer-Aided Design and Applications, Vol. 12, No. 6, pp. 663-673, 2015.
[43] J. E. Makem, C. G. Armstrong and T. T. Robinson, “Automatic decomposition and efficient semi-structured meshing of complex solids”, Engineering with Computers, Vol. 30, No. 3, p.p. 345-361, 2014.
[44] B. Jüttler, M. Kapl, D. M. Nguyen, Q. Pan and M. Pauley, “Isogeometric segmentation: The case of contractible solids without non-convex edges”, Computer-Aided Design, Vol, 57, pp. 74-90, 2014.
[45] D. R. White, S. Saigal and S. J. Owen, “CCSweep: automatic decomposition of multi-sweep volumes”, Engineering with computers, Vol. 20, No. 3, pp. 222-236, 2004.
[46] H. Wu and S. Gao, “Automatic swept volume decomposition based on sweep directions extraction for hexahedral meshing”, Procedia Engineering, Vol. 82, pp. 136-148, 2014.
[47] T. Blacker, “Automated conformal hexahedral meshing constraints, challenges and opportunities”, Engineering with Computers, Vol. 17, No. 3, pp. 201-210, 2001.
[48] K. Shimada, “Current trends and issues in automatic mesh generation”, Computer-Aided Design and Applications, Vol. 3, No. 6, pp. 741-750, 2006.
[49] S. Yamakawa, I. Gentilini and K. Shimada, “Subdivision templates for converting a non-conformal hex-dominant mesh to a conformal hex-dominant mesh without pyramid elements”, In Proceedings of the 17th International Meshing Roundtable, pp. 497-512, 2008.
[50] S. Yamakawa and K. Shimada. “Automatic All-Hex Mesh Generation of Thin-Walled Solids via a Conformal Pyramid-less Hex, Prism, and Tet Mixed Mesh”, In Proceedings of the 20th International Meshing Roundtable, pp. 125-141, 2001.
[51] L. Sun, G. Zhao and X. Ma, “Adaptive generation and local refinement methods of three-dimensional hexahedral element mesh”, Finite elements in analysis and design, Vol. 50, pp. 184-200, 2012.
[52] S. J. Owen and T. R. Shelton, “Evaluation of grid-based hex meshes for solid mechanics”, Engineering with Computers, Vol. 31, No. 3, pp. 529-543, 2015.
[53] N. Kowalski, F. Ledoux and P. Frey, “Smoothness driven frame field generation for hexahedral meshing”, Computer-Aided Design, Vol. 72, pp. 65-77, 2016.
[54] J. Gregson, A. Sheffer and E. Zhang, “All‐hex mesh generation via volumetric polycube deformation”, In Computer graphics forum, Vol. 30, No. 5, pp. 1407-1416, 2011.
[55] 張倢綜,「CAD模型基礎擠出物之實體網格自動化建構技術發展」,國立中央大學,碩士論文,民國107年
[56] J. Y. Lai, C. Wong, T. T. Huynh, M. H. Wang, C. H. Hsu, Y. C. Tsai and C. Y Huang, “Small blend suppression from B-rep models in computer-aided engineering analysis”, Journal of the Chinese Institute of Engineers, Vol. 39, No. 6, pp. 735-745, 2016.
[57] J. Y. Lai, M. H. Wang, Z. W. You, Y. K. Chiu, C. H. Hsu, Y. C. Tsai and C. Y. Huang, “Recognition of virtual loops on 3D CAD models based on the B-rep model”, Engineering with Computers, Vol. 32, No. 4, pp. 593-606.
[58] Pradiktio Putrayudanto, “Face types recognition for thin-shell cad models”, National Central University, Master Thesis, 2021.
[59] J. Y. Lai, M. H. Wang, P. P. Song, C. H. Hsu and Y. C. Tsai. “Automatic recognition and decomposition of rib features in thin-shell parts for mold flow analysis”, Engineering with Computers, Vol. 34, pp. 801-820, 2018.
[60] 王明暄,「應用於模流分析之CAD模型特徵辨識與實體網格品質提升之研究」,國立中央大學,博士論文,2017
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2021-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明