博碩士論文 104323084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.137.161.222
姓名 黃詮涵(Chuan-Han Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 立體微型振動發電機之研製
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 三維導電微成型技術開發應用於微機電系統之研究
★ 用於電火花加工的油質感測器★ 油液污濁度檢測器之設計與改良
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近幾年由於微機電製程技術的迅速發展,導致感測器、制動器等元件所需的消耗功率降低許多,為了將元件最小化,我們發展出微型發電機作為傳統電池的替代方案,其中以立體導電結構以及振動所引起的電磁感應來作為微型發電機的發電原理。此研究利用自動點膠機配上三軸移動平台將具有導電性的銀膠在一透過微機電製程所加工過的懸臂樑結構上製作出多層線圈,將此懸臂樑搭配釹鐵硼磁鐵放置在一振盪器上,而懸臂樑與釹鐵硼磁鐵所造成的相對位移會進而產生發電,來達成發電機的運作原理。本實驗比對了一至三層線圈的發電機來探討單層與多層線圈的量測結果。由實驗數據中可發現單層線圈具有較高輸出,較低頻寬,而多層線圈有較低輸出,較高頻寬的現象。
摘要(英) Due to the rapid development in microelectromechanical systems (MEMS), the power consumptions of sensors and actuators decrease in a large scale. In order to minimize the size of the devices, we present a micro energy harvester to replace the traditional batteries which have the disadvantage of size in general. In this case, 3-dimensional structure under vibrations causing the electromagnetic induction to generate electricity is selected to be the principle of the energy harvesting.
This study proposes a fabrication on the silicon wafer process for the cantilever with multi-layer conductive coils by an automatic dispensing robot stacking above the cantilever. The cantilever is placed on a shaker which contributes a relative displacement with a Neodymium magnet.
We compare the performances of 1 to 3 layers of coils on the harvesters. From the experimental results, we found that the single-layer coil harvesters have high output power but narrow bandwidth. On the other hand, multi-layer coil harvesters have lower output power but wider bandwidth.
關鍵字(中) ★ 電磁感應
★ 振動發電
★ 立體微型振動發電機
關鍵字(英)
論文目次 1. Introduction 1
1.1 Background study 1
1.2 Motivation and objective 1
1.3 Literature review 6
1.4 Thesis outline 11
2. Theory 13
2.1 Research modeling 13
2.2 Electromagnetic induction 14
3. Fabrication and Design 16
3.1 3-axis automatic dispensing robot 16
3.2 Dispensing material 16
3.3 Cantilever fabrication 17
3.4 Micro-generator holder 20
3.5 Micro-generator fabrication 21
4. Research Methods and Results 26
4.1 Experiment setup 26
4.2 Output voltage against different magnet positioning 27
4.3 Comparison of the 3-layer coil harvester 30
4.4 Comparison of 3 different layers of the harvesters 34
4.5 Comparison with other energy harvesters 38
5. Conclusion 39
References 40
參考文獻 [1] L. Mateu, F. Moll, "Review of energy harvesting techniques and applications for microelectronics (Keynote Address)", Proc. 5837, VLSI Circuits and Systems II, 2005.
[2] A. Stevels and A. J. Jansen, “Renewable energy in portable radios: an environmental benchmarking study,” The Journal of Sustainable Product Design, 1998.
[3] A. Jansen, S. Fridstedt, and A. Weernink, “A batteryless remote control for Volvo, results of a feasibility study,” in ISATA 2000 Conf. on Automotive and Transportation Technology, 25-29 September 2000.
[4] G. De Pasquale, and A. Soma, “Investigations on energy scavenging methods using MEMS devices,” International Semiconductor Conference, Sinaia, Romania, pp. 163-166, 2008.
[5] S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, and V. Sundararajan, “Improving power output for vibration-based energy scavengers,” IEEE Prevasive Comput, pp. 28-36, 2005.
[6] S. Meninger, J. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J. Lang, “Vibration-to-electric Coonversion,” Proceedings of 1999 International Symposium on Low Electronics and Design, pp. 48-53, 1999.
[7] S. Boisseau, G. Despesse, and B. Ahmed Seddik, “Electrostatic Conversion for Vibration Energy Harvesting,” Small-Scale Energy Harvesting, Intech, 2012.
[8] M. Mizuno and D. G. Chetwynd, “Investigation of a resonance microgenerator”, J. Micromech. Microeng., 13 209-216, 2003.
[9] Q. Zhang, Y. Wang, L. Zhao and E. S. Kim, “Integration of microfabricated low resistance and thousand-turn coils for vibration energy harvesting”, J. Micromech. Microeng., 26 025019, 2016.
[10] K. Tao, J. Wu, L. Tang, X. Xia, S. W. Lye, J. Miao and X. Hu, “A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester”, J. Micromech. Microeng., 26 035020, 2016.
[11] B. Yang, C. Lee, W. Xiang, J. Xie, J. H. He, R. K. Kotlanka, S. P. Low and H. Feng, “Electromagnetic energy harvesting from vibrations of multiple frequencies”, J. Micromech. Microeng., 19 035001, 2009.
[12] K. Ashraf, M.H. Md Khir, J.O. Dennis and Z. Baharudin, “Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies”, Sens. Actuators A: Phys, 195 123–132, 2013.
[13] Y. Zhang, Y. Hu, S. Chen, Z. Peng, X. Li and F. Wang, “Electret Based Micro Energy Harvesting Device with Both Broad Bandwidth and High Power Density From Optimal Air Damping”, in 9th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kaohsiung, TAIWAN, pp. 355-358, 2017.
[14] P. Podder, P. Constantinou, D. Mallick, A. Amann and S. Roy, “Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester”, Journal of Microelectromechanical Systems, 26 539-549, 2017.
[15] I. Sari, T. Balkan and H. Kulah, “An electromagnetic micro power generator for wideband environmental vibrations”, Sens. Actuators A: Phys, 145-146, pp. 405-413, 2008.
[16] S.J. Chen, Y.Y. Feng, S.Y. Liu, “Fabrication of a three dimensional cantilevered vibration energy harvester using silver ink”, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 1075-1077, 2015.
[17] C.B. Williams, R.B. Yates, “Analysis of a micro-electric generator for microsystems”, Sens. Actuators A:Phys, 52, pp. 8–11, 1996.
[18] M. El-hami, P. Glynne-Jones, N.M. White, M. Hill, S. Beeby, E. James, A.D. Brown, J.N. Ross, “Design and fabrication of a new vibration-based electromechanical power generator”, Sens. Actuators A: Phys, 92, pp. 335–342, 2001.
[19] S.S. Rao, Mechanical Vibrations, Fifth Edition in SI units, Pearson Education South Asia Pte Ltd, 2011.
[20] C. K. Alexanger, M. N. O. Sadiku, Fundamentals of Electric Circuits, Fifth Edition, McGraw-Hill International Edition, 2013.
[21] Y.Y. Feng, S.J. Chen and Y.L. Tu, “Development of a Vibration-Based Electromagnetic Energy Harvester by a Conductive Direct-Write Process”, Energies, 10 337, 2017.
[22] K. Tao, G. Ding, P. Wang, Z. Yang and Y. Wang, “Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets“, 2012 25th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 1237-1240, 2012.
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2018-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明