博碩士論文 104323106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.129.42.71
姓名 杜坤庭(Kun-Ting Tu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋅與銅對Al-Zn-Mg-Cu合金固溶溫度與淬火敏感性之影響
(Effect of Zn and Cu on the solution temperature and quench sensitivity of Al-Zn-Mg-Cu alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由合金設計原理、機械性質及實際的熱處理驗證,透過 光學顯微鏡(OM)、高溫熱示差掃描分析儀(HTDSC)、渦電流導電度計 (%IACS)、電子顯微鏡(TEM & SEM)等對微結構的分析,來探討合金 元素對 Al-Zn-Mg-Cu 合金之固溶溫度與淬火敏感性之影響。
結果顯示,降低銅含量後,均質化處理將使 Al-Zn-Mg-Cu 合金 之共晶相 T 相(Mg3Zn3Al2)與 η 相(MgZn2)均回溶於鋁基地,且不會析 出低熔點(~495°C)的 S 相(Al2CuMg),因此提高了合金之固溶溫度, 增加合金固溶熱處理之效率;另外藉由提高合金之鋅含量,以增加強 化相 η′ (MgZn2)之析出量,來彌補因 Cu 降低所減損合金之機械強度, 結果顯示鋅原子不但可以提升合金強度外,對於合金延性也沒有不良 減損,且可以與 Zr 原子加成改善合金之淬火敏感性。
摘要(英)
Based on the principle of design, mechanical properties and heat treatment of the alloy, and by using the optical microscope (OM), the high temperature differential scanning calorimetry (HTDSC), the electrical conductivity meter (% IACS), and the electron microscope (TEM & SEM) to analyze the microstructure of the alloy. In order to explore the impact the alloy has on the Al-Zn-Mg-Cu alloy solution temperature and quenching sensitivity.
The results show that the eutectic T phase (Mg3Zn3Al2) and the η phase (MgZn2) of the Al-Zn-Mg-Cu alloy are homogeneously dissolved in the aluminum matrix and doesn’t precipitate the low melting point’s S phase (Al2CuMg) after the copper content is reduced. Thus, increases the solution temperature of the alloy and improves the efficiency of the solution heat treatment. By increasing the zinc content of the alloy to increase the precipitation amount of the strengthening phase η′(MgZn2) to compensate for the reduction of the mechanical strength of the reduced alloy due to copper. The results show that the zinc atom not only improves the strength of the alloy, but also has no damage to the ductility of the alloy, and can improve the quenching sensitivity of the alloy with the addition of zirconium atom.
關鍵字(中) ★ 固溶溫度
★ 淬火敏感性
★ 機械性質
關鍵字(英) ★ Al-Zn-Mg-Cu
★ solution temperature
★ quenching sensitivity
★ mechanical properties
論文目次 摘要 I
Abstract II
總目錄 III
圖目錄 VI
表目錄 VIII
1 前言與文獻回顧 1
1.1 鋁合金特性簡介 2
1.1.1 鋁合金的強化機制 2
1.2 Al-Zn-Mg-Cu 簡介 5
1.2.1 Al-Zn-Mg-Cu 合金析出行為 6
1.2.2 AA7075 鋁合金簡介 10
1.3 元素添加對 Al-Zn-Mg-Cu 合金機械性質與淬火敏感性之影響 11
1.3.1 鋅(Zn)對合金機械性質之影響12
1.3.2 銅(Cu)對合金機械性質與固溶溫度之影響 13
1.3.3 鋯(Zr)對合金淬火敏感性之影響 16
1.4 研究之目的與實驗設計概述 18
2 實驗方法與步驟19
2.1 合金熔配 19
2.2 均質化處理 21
2.3 熱加工 21
2.4 熱處理 22
2.5 微結構觀察與分析 22
2.5.1 光學顯微鏡(Optical Microscopy, OM) 22
2.5.2 導電度測試 23
2.5.3 差式掃描熱量法(Differential Scanning Calorimetry,DSC) 23
2.5.4 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 24
2.5.5 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 24
2.6 機械性質分析 25
2.6.1 硬度試驗(Hardness, HRB) 25
2.6.2 拉伸試驗(Tensile Test) 25
2.6.3 Jominy 端面淬火試驗 26
3 結果與討論 27
3.1 微結構分析 27
3.1.1 金相觀察 27
3.1.2 穿透式電子顯微鏡(TEM) 29
3.1.3 導電度測試 33
3.1.4 差式掃描熱量法(DSC) 36
3.2 機械性質分析 38
3.2.1 硬度試驗 38
3.2.2 拉伸性質及破斷面形貌 41
3.2.3 Jominy 端面淬火試驗 46
4 結論 49
5 附錄:其他未來研究概述 50
6 參考文獻 51
參考文獻 [ASTM1] ASTM B918M-09, “Standard Practice for Heat Treatment of Wrought Aluminum Alloys”, (2009)
[ASTM2] ASTM B557M-15, “Annual Book of ASTM Standards”, (2015).
[ASTM3] ASTM A255-10, “Standard Test Methods for Determining Hardenability of Steel”, (2014).
[XIE] Fan-You Xie , Xin-Yan Yan, “A study of microstructure and microsegregation of aluminum 7050 alloy”, Materials Science and Engineering A, vol.355 (2003), pp.144-153.
[HYL] Hong-Ying LI, Jiao-Jiao LIU, “Microstructure evolution of Al−Zn−Mg−Cu alloy during non-linear cooling process”, Trans. Nonferrous Met. Soc. China, vol.26 (2016), pp.1191−1200.
[JIA] TANG Jian-Guo, CHEN Hui, “Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy”, Trans. Nonferrous Met. Soc. China, vol.22 (2012), pp.1255-1263.
[LIN] Y.C. Lin, Yu-Qiang Jiang, “Effect of creep-aging on precipitates of 7075 aluminum alloy”, Materials Science & Engineering A, vol.588 (2013), pp.347-356.
[LIU] LIU Sheng-Dan, ZHANG Xin-Ming, “Effect of Zr content on quench sensitivity of Al-Zn-Mg-Cu alloys”, Trans. Nonferrous Met. SOC. China, vol.17 (2007), pp.787-792.
[LIU1] LIU Shengdan, LI Chengbo, OUYANG Hui, “Quench sensitivity of ultrahigh Strength 7000 series aluminum alloys”, The Chinese Journal of Nonferrous Metals, vol.23 No.4 (2013) pp.927-938.
[STA] X.-M. Li, M. J. Starink, “The Effect of Compositional Variations on the Characteristics of Coarse Intermetallic Particles in Overaged 7xxx Al Alloys”, Mater. Sci. Techn, vol.17 (2001) pp.1324-28.
[STI] K. Stiller, P.J. Warren, “Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100° and 150°C”, Materials Science and Engineering A, vol.270 (1999) pp.55–63.
[JTH] J. T. Healey, R. W. Gould, “Effect of thermal and mechanical pretreatments on the guinier-preston zone state of a commercial 7075 aluminum alloy”, Metallurgical Transactions A, vol.8 (1977) pp.1907–1910.
[JCW] James C. Williams, Edgar A. Starke, Jr., “Progress in structural materials for aerospace systems”, Acta Materialia, vol.51 (2003) pp.5775–5799.
[YCL] Y.C. Lin, Yu-Chi Xia, Xiao-Min Chen, Ming-Song Chen, “Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate”, Computational Materials Science, vol.50 (2010) pp.227–233.
[LKB] L.K. Berg, J. Gjonnes, V. Hansen, X. Z. Li, “GP-ZONES IN Al–Zn–Mg ALLOYS AND THEIR ROLE IN ARTIFICIAL AGING”, Acta mater, vol.49 (2001) pp.3443–3451.
[GAN] Gang Sha, Alfred Cerezo, “Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050)”, Acta Materialia, vol.52 (2004) pp.4503–4516.
[CHA] Chandan Mondal, A.K. Mukhopadhyay, “On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy”, Materials Science and Engineering A, vol.391 (2005) pp.367–376.
[Li] R.X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan and Z.Q. Hu, “Age-hardening behavior of cast Al–Si base alloy”, Materials Letters, vol.58 (2004) pp.2096–2101.
[JAM] James C Williams, Edgar A Starke Jr., “Progress in structural materials for aerospace systems”, Acta Materialia, vol.51 (2003) pp.5775–5799.
[CHA1] Chaitanya Sharma, Dheerendra Kumar Dwivedi, Pradeep Kumar, “Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al–Zn–Mg alloy AA7039”, Materials and Design, vol.43 (2013) pp.134–143.
[KEI] Keith E. Knipling, David N. Seidman, David C. Dunand, “Ambient and high temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr(at.%) alloys”, Acta Materialia, vol.59 (2011) pp.943-954.
[THS] T.H. Sanders, Jr. and E. A. Starke, Jr., ”Relationship of Microstructure to Monotonic and Cyclic straining of two Age Hardening Aluminum Alloys”, Metall. Trans., vol.7A (1976) pp. 1407-1418.
[JJT] J.J. Thompson, E. S. Tankins and V. S. Agarwala, “A Heat Treatment for Reducing Corrosion and Stress Corrosion Cracking susceptibilities in 7XXX Aluminum Alloys”, Materials Performance, (1987) pp.45-52.
[SHS] S.H. Seyed Ebrahimi, M. Emamy, N. Pourkia, “The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition”, Materials & Design, vol.31 Issue 9 (2010) pp.4450–4456.
[ZIY] Ziyong Chen, Yuanke Mo and Zuoren Nie, Ziyong Chen, Yuanke Mo and Zuoren Nie, “Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys”, Metallurgical and Materials Transactions A, vol.44A (2013) pp.3910-3921.
[REE] R. E. Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principles”, Third edition, PWS publishing company, p. 533.
[TAN] Jian-guo TANG, Hui CHEN, Xin-ming ZHANG, “Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy”, Transactions of Nonferrous Metals Society of China, Vol. 22 (2012) Issue 6 pp.1255-1263.
[JAN] A. Janghorban, A. Antoni-Zdziobek, M. Lomello-Tafin, C. Antion, Th. Mazingue, A. Pisch, “Phase equilibria in the aluminium-rich side of the Al-Zr system”, J Therm Anal Calorim, vol.114 (2013) pp.1015-1020.
[JOH] John E. Hatch, “Aluminum: properties and Physical Metallurgy”, American Society for Metals, USA, (1984) pp.145-148.
[IJP] I. J. Polmear, “Light Alloys Metallurgy of the Light Metals”, 2nd ed, Edward Arnold, London, England, pp.18-143, (1989).
[QIN] Qingjiang Meng and G. S. Frankel, “Effect of Cu Content on Corrosion Behavior of 7xxx Series Aluminum Alloys”, Journal of The Electrochemical Society, vol.151 (2004) pp.271-283.
[JRD] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International, (1993).
[GOR] Goroh Itoh, Takehiko Eto, Yoshimitsu Miyagi and Motohiro Kanno, “Al-Zn-Mg alloys”, Jstage, vol.38 No.12 (1988) pp.818-839.
[JWM] J. W. Martin, ”Micromechanisms in Particle-hardened Alloys”, Cambridge University Press, (1980) pp.1~78.
[STL] S.T Lim, S.J Yun, S.W Nam, “Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications”, Materials Science and Engineering: A, vol.371 Issues 1–2 (2004) pp.82–90.
[SYP] S.Y. Park, W.J. Kim, “Difference in the Hot Compressive Behavior and Processing Maps between the As-cast and Homogenized Al-Zn-Mg-Cu (7075) Alloys”, Journal of Materials Science & Technology, vol.32 Issue 7 (2016) pp.660–670.
[TOL] Tolga Dursun, Costas Soutis, “Recent developments in advanced aircraft aluminium alloys”, Materials & Design, vol.56 (2014) pp.862–871.
[LIM] Lim S T, Yun S J, Nam S W, “Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications”, Materials Science and Engineering A, vol.371(2004) pp.82−90.
[JIN] Jin-feng LI, Zhuo-wei PENG, Chao-xing LI, “Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments”, Transactions of Nonferrous Metals Society of China, vol.18 Issue 4 (2008) pp.755-762.
[MOH] Mohammad Tajally, Esmaeil Emadoddin, “Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets”, Materials & Design, vol.32 Issue 3 (2011) pp.1594–1599.
[GSH] Gang Sha, Alfred Cerezo, “Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050)”, Acta Materialia, vol.52 Issue 15 (2004) pp.4503–4516.
[FAN] Xi-gang FAN, Da-ming JIANG, Qing-chang MENG, “Evolution of eutectic structures in Al-Zn-Mg-Cu alloys during heat treatment”, Transactions of Nonferrous Metals Society of China, vol.16 Issue 3 (2006) pp577-581.
[CTW] C.T. Wu, S.L. Lee, M.H. Heieh, J.C. Lin, “Effects of Mg content on microstructure and mechanical properties of Al-14.5Si-4.5Cu alloy”, Metall. Mater. Trans. A, vol.41A (2010) pp.751-757.

[CHE] Yu-Te Chen, Guo-Yu Nieh, Jing-Hong Wang, Ten-Fu Wu, Sheng-Long Lee, “Effects of Cu/Mg ratio and heat treatment on microstructures and mechanical properties of Al-4.6Cu-Mg-0.5Ag alloys”, Materials Chemistry and Physics, vol.162 (2015) pp.764-770.
[ASK] Donald R. Askeland: The Science and Engineering of Materials, 6th Ed, (2010) Ch.12.
[JEH] J.E. Hatch, “Aluminum: Properties and Physical Metallurgy”, American Society for Metals, Materials Park, OH (1984) pp.134-199.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2017-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明