博碩士論文 104323110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.119.131.178
姓名 呂明恆(Ming-Heng Lu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
(Modeling of Dynamic Analysis of A Rotary Compressor with Considering Gas-induced Loads)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計★ 內嚙合珩磨加工圓柱齒輪與螺桿轉子方法之 研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 迴轉式壓縮機具有構造簡單、成本低的優勢,因此在家用空調中有很大的比例是使用迴轉式壓縮機,為了達到壓縮流體的目的,迴轉式壓縮機無法避免的是不對稱之幾何結構,若沒有偏心轉軸凸輪狀之結構,壓縮機無法壓縮氣體,因此不對稱之幾何結構成為了振動最大的主因,也成為了迴轉式壓縮機最大的缺點。若能建立一模型可以成功預測於氣體負載下迴轉式壓縮機之動態響應,可以輕易改變馬達轉速、氣體造成之負載等工作狀況,預先得知偏心轉軸之位移情形、加速度變化等,可以大幅省去壓縮機改良研發之作業時間。因此,本研究建立一組迴轉式壓縮機之多體動力學分析模型,其中不僅考量冷媒氣體在機構中造成之流體壓力,亦考量了配重塊質量與安裝之相位角對於運轉下之迴轉式壓縮機造成之影響。本文中亦對於實務上常使用之兩種工作狀況下模擬,並對於兩種工作狀況提出改良之建議配置,整理上述情況之軸承負載力、偏心轉軸之位移狀況等,並配合實驗結果作分析討論,提供製造商初步對於振動噪音改善之方針,以利改進其壓縮機之動態特性。
摘要(英) With its simplicity and low cost, rotary compressors are widely adopted in household air conditionings. The geometric structure of the compressor is made asymmetrically to form an eccentric cam in order to conduct the compression process of the refrigerant, which becomes the major cause of its vibration and its biggest drawback. By establishing a numerical model that could predict the dynamic response of the rotary compressor under various working conditions such as different rotation speeds and gas loads, the displacement and the change of acceleration of the shaft can be obtained in advance, which will dramatically reduce the time of development of compressors. Therefore, a multi-body dynamic model was established in this research, which considers the fluid pressure induced by the refrigerant and the mass and phase angle of the counterweight to evaluate their influence on an operating rotary compressor. Optimized conditions were proposed based on the simulations conducted under two practical working conditions. Summarizing the above results including the load of bearings and the displacement of the shaft, the analysis and the experiment result can be provided to the manufacturer in order to improve the dynamic response such as vibration and noise of the compressor.
關鍵字(中) ★ 迴轉式壓縮機
★ 多體動力學
★ 循環氣體負載
★ 動態響應
關鍵字(英)
論文目次 摘要 I
ABSTRACT II
謝誌 IV
目錄 V
圖目錄 VII
表目錄 XI
符號對照表 XII
第1章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-3 研究動機與目的 5
1-4 論文架構 6
第2章 迴轉式壓縮機轉軸所承受之氣體負載 8
2-1 迴轉式壓縮機壓縮腔體容積計算 9
2-2 壓縮腔室壓力計算 11
2-3 等效氣體力之計算 13
2-4 本章結論 14
第3章 轉子系統之動平衡計算 15
3-1 轉子系統於幾何上之動平衡 15
3-2 轉子系統不平衡量之定義 17
3-3 考量氣體負載之配重塊設計 22
3-4 本章結論 25
第4章 多體動力學模型之模擬分析 26
4-1 多體動力學模擬軟體MSC.ADAMS介紹 26
4-1-1 拘束條件種類簡介 26
4-1-2 求解器之介紹及選用條件 27
4-2 CAE模型建立及參數設定 28
4-2-1 轉動系統之坐標系、觀測點及配重塊相位角定義 33
第5章 應用多體動力學模型模擬與實驗比對 35
5-1 狀況1:模擬工況一改良前後之比較 36
5-1-1 位移曲線之比對探討 36
5-1-2 運動軌跡之比對探討 38
5-1-3 偏心轉軸上、下標註點加速度曲線之比對探討 41
5-1-4 支座作用力之比對探討 46
5-2 狀況2:模擬工況二改良前後之比較 48
5-2-1 位移曲線之比對探討 48
5-2-2 運動軌跡之比對探討 51
5-2-3 偏心轉軸上、下標註點加速度曲線之比對探討 54
5-2-4 支座作用力之比對探討 58
5-3 實驗平台架設與介紹 60
5-4 模擬與實驗結果分析討論 64
5-4-1 工況一實驗量測結果 64
5-4-2 工況二實驗量測結果 65
5-4-3 考量邊界條件之迴轉式壓縮機模擬結果 67
5-5 本章結論 74
第6章 總結與未來展望 76
6-1 總結 76
6-2 未來展望 77
參考文獻 78
作者介紹 80
參考文獻

[1] P. K. Katare, V. M. Kriplani, “Decade Developments of Rotary Compressor,” International Journal of Engineering and Technology, Vol. 2, Paper No. 12, 2012.
[2] K. Imaichi, M. Fukushima, S. Muramatsu, N. Ishii, “Vibration Analysis of Rotary Compressors,” International Compressor Engineering Conference, Paper No. 407, 1982.
[3] Y. C. Park, “Transient Analysis of a Variable Speed Rotary Compressor,” Energy Conversion and Management, Vol. 51, pp. 277-287, 2010.
[4] H. Hattori, N. Kawashima, “Dynamic Analysis of a Rotor-Journal Bearing System for Twin Rotary Compressors,” International Compressor Engineering Conference, Paper No. 768, 1990.
[5] Z. Wang, X. Yu, F. Liu, Q. Feng, Q. Tan, “Dynamic Analyses for the Rotor-Journal Bearing System of a Variable Speed Rotary Compressor,” International Journal of Refrigeration, Vol. 36, pp. 1938-1950, 2013.
[6] D. Ba, W. Deng, S. Che, Y. Li, H. Guo, N. Li, X. Yue, “Gas Dynamics Analysis of a Rotary Compressor Based on CFD,” Applied Thermal Engineering, Vol. 99, pp. 1263-1269, 2016.
[7] N. Ishii, M. Fukushima, M. Yamarnura, S. Fujiwara, S. Kakita, “Optimum Combination of Dimensions for High Mechanical Efficiency of a Rolling-Piston Rotary Compressor,” International Compressor Engineering Conference, Paper No. 731, 1990.
[8] R. Dufour, M. Charreyron, M. Gerard, “Dynamics Prediction of Refrigerant Rotary Compressor Crankshaft,” International Compressor Engineering Conference, Paper No. 1253, 1998.
[9] S. Lee, J. Shim, K. C. Kim, “Development of Capacity Modulation Compressor Based on a Two Stage Rotary Compressor-Part I:Modeling and Simulation of Compressor Performance,” International Journal of Refrigeration, Vol. 54, pp. 22-37, 2015.
[10] K. Okada, K. Kuyama, “Motion of Rolling Piston in Rotary Compressor,” International Compressor Engineering Conference, Paper No. 391, 1982.
[11] T. Yanagisawa, T. Shimizu, I. Chu, K. Ishijima, “Motion Analysis of Rolling Piston in Rotary Compressor,” International Compressor Engineering Conference, Paper No. 392, 1982.
[12] G. Ferraris, M. Andrianoely, A. Berlioz, R. Dufour, “Influence of Cylinder Pressure on the Balancing of a Rotary Compressor,” Journal of Sound and Vibration, Vol. 292, pp. 899-910, 2006.
[13] K. T. Ooi, T. N. Wong, “A Computer Simulation of a Rotary Compressor for Household Refrigerators,” Applied Thermal Engineering, Vol. 17, pp. 65-78, 1997.
[14] H. Zhang, J. Wu, F. Xie, A. Chen, Y. Li, “Dynamic Behaviors of the Crankshaft in Single-Cylinder and Twin-Cylinder Rotary Compressors,” International Journal of Refrigeration, Vol. 47, pp. 36-45, 2014.
[15] B. Wang, X. Liu, W. Shi, “A Novel Vapor Injection Structure on the Blade for Rotary Compressor,” International Compressor Engineering Conference, Paper No. 2422, 2016.
[16] J. Huang, H. Wei, Y. Hu, O. Yang, “Study on Balance System of Rotary Compressor,” International Compressor Engineering Conference, Paper No. 1896, 2008.
[17] J. Huang, Y. Hu, S. Xia, L. Ren, “Dynamic Balance Technology of Inverter Controller Rotary Compressor,” International Compressor Engineering Conference, Paper No. 1949, 2010.
[18] MSC Inc., MSC ADAMS Reference Manual, pp. 11-15, 2012.
[19] 古哲銘,吳育仁,詹詠順,「渦捲式壓縮機之動平衡設計及CAE動載模擬驗證」,中華民國振動與噪音工程學術研討會,pp. 28-33, 2014。
[20] J. Giesbers, Contact Mechanics in MSC ADAMS-A Technical Evaluation of the Contact Models in Multibody Dynamics Software MSC Adams, University of Twente, Netherlands, 2012.
[21] J. H. Zhang, “Dynamic Coupling Analysis of Rocket Propelled Sled Using Multibody-finite Element Method,” Journal of Computer Modelling New Technologies, Vol. 18, pp. 25-30, 2014. 
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明