博碩士論文 104323602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.142.156.235
姓名 納塔莉亞(Andita Nataria Fitri Ganda)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 開發電化學剝離石墨烯與聚合物複合材料於防腐蝕塗層
(Development of corrosion protection performance electrochemical exfoliating graphene – polymer composite coatings)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性
★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容★ 懸空石墨烯之特性研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在強化金屬防腐蝕的研究中,我們發展電化學剝離法的石墨烯奈米複合材料作為保護層,選用聚胺脂或環氧樹脂與電化學剝離石墨烯來合成複合材料。電化學剝離法的石墨烯製造過程容易、生產成本低、並且對環境無害,因此我們選用此種製程的石墨烯來合成複合材料。在這項研究中,探討了石墨烯片層的大小對防蝕的影響,利用小型超音波細胞砸碎機來製備兩種大小不同的電化學剝離石墨烯片層,其平均面積為(大:13.35 µm2 , 小: 2.87 µm2),並改變電化學剝離石墨烯的濃度去作探討,研究方法是將複合材料浸泡在氯化鈉溶液中利用電化學量測。結果發現,電化學剝離法所得石墨烯皆有良好的分散性,不論是在聚胺脂或是環氧樹脂的溶液中,並且可以穩定的附著在如銅或鋼鐵之金屬表面。此外,所有複合塗層皆可以增強金屬的抗蝕的能力,尤其是大片層的電化學剝離石墨烯塗層的防蝕能力更好,含0.5 wt% 大片層電化學剝離石墨烯複合聚胺脂之塗層浸泡在0.1M 的氯化鈉溶液中,可得到最低的腐蝕速率 4.0×10-4 mm/year ,比純的聚胺脂塗層腐蝕速率2.7×10-3 mm/year的效果還要好。而含0.75 wt% 大片層電化學剝離石墨烯複合環氧樹脂塗層具有最佳的防蝕能力2.3×10-5 mm/year。在應用上,若結合此兩種複合塗層,一層堆疊一層的方式可加強其防蝕能力,尤其在基底層和第二層利用環氧樹脂與電化學剝離石墨烯塗層,最外層用聚胺脂與電化學剝離石墨烯塗層的複合方式,在3.5 wt%的氯化鈉溶液中,可得到最佳的防蝕速率1.81×10-5mm/year。
摘要(英) Nanocomposite coatings with electrochemical exfoliating graphene as a filler are developed to enhance the corrosion protection on metal substrates. Polyurethane and epoxy were used in this study. Using simple method to produce electrochemical exfoliating graphene (EC-Graphene) into polymer matrix. EC-Graphene was used because it has a low production cost, easy to produce and environmentally friendly. Large and small flake size graphene were explored to improve the corrosion resistance of composites. EC-Graphene flakes of two different average sizes (large: 13.35 µm2 and small: 2.87µm2) were prepared by a probe tip sonicator. The composites were prepared with varying content of graphene and the electrochemical measurement was conducted in sodium chloride solution. The results show that EC-Graphene has a good dispersion either in polyurethane or epoxy matrix. And also it can be coated on the metal surfaces such as copper and carbon steel. All filler could enhance the corrosion resistance of the composites. Hence we found that EC-Graphene with a large flakes size superior to EC-Graphene with a small flakes size. In low concentration of sodium chloride (0.1 M), adding 0.5 wt% large EC-Graphene into polyurethane can lower the corrosion rate to 4.0×10-4mm/year which is much better than the pure polyurethane. While for epoxy, the lowest corrosion rate was achieved within adding 0.75 wt% of large graphene with the value 2.3×10-5 mm/year. For the application of coating system, we also tested stacking Epoxy/Polyurethane/ EC-Graphene composite coatings in 3.5 wt% NaCl. Coating used layer by layer system with Epoxy/ EC-Graphene as base coat or primer coat and Polyurethane/ EC-Graphene as outer coat coated on carbon steel. We could obtain the corrosion value up to 1.81×10-5 mm/year. Furthermore, the facile and ecofriendly method would be promising process fabricating graphene-based nanocomposites and develop their application in the anticorrosion field.
關鍵字(中) ★ 電化學剝離石墨烯
★ 奈米複合防腐塗層
關鍵字(英) ★ Electrochemical exfoliating graphene
★ corrosion
★ nanocomposite coatings
論文目次 Table of Contents

摘要 ii
Abstract ii
List of figures vi
List of tables ix
CHAPTER 1 1
1. Introduction 1
1.1 Graphene 1
1.2 Graphene production 2
1.3 Electrochemical exfoliated graphene (EC-graphene) 4
CHAPTER 2 7
2. Polymer nanocomposite coatings 7
2.1 Method of polymer nanocomposite coatings fabrication 8
2.2 Graphene for corrosion resistance 9
2.3 Graphene-based nanocomposite coatings 12
CHAPTER 3 21
3. Experimental flow scheme 21
3.3 Nanocomposite paint process 21
3.4 Coating process 22
3.5 Measurements 23
3.6 Sample definition 27
CHAPTER 4 28
4. RESULTS AND DISCUSSIONS 28
4.1 Raman Spectroscopy 28
4.2 FTIR analysis 29
4.3 Electrochemical measurement results 33
4.4 Discussion 49
CHAPTER 5 57
References 58
參考文獻








References
1. 29 CFR OSHA General Industry. 1910, C.O.G.I.
2. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
3. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
4. Bohm, S., Graphene against corrosion. Nature Nanotechnology, 2014. 9(10): p. 741-742.
5. Nine, M.J., et al., Graphene: a multipurpose material for protective coatings. Journal of Materials Chemistry A, 2015. 3(24): p. 12580-12602.
6. Gass, M.H., et al., Free-standing graphene at atomic resolution. Nature Nanotechnology, 2008. 3(11): p. 676-681.
7. Bunch, J.S., et al., Impermeable atomic membranes from graphene sheets. Nano Letters, 2008. 8(8): p. 2458-2462.
8. Edwards, R.S. and K.S. Coleman, Graphene synthesis: relationship to applications. Nanoscale, 2013. 5(1): p. 38-51.
9. Ambrosi, A., et al., Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014. 114(14): p. 7150-7188.
10. Liu, J.L., et al., A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. Rsc Advances, 2013. 3(29): p. 11745-11750.
11. Kumar, M.K.P., S. Shanthini, and C. Srivastava, Electrochemical exfoliation of graphite for producing graphene using saccharin. Rsc Advances, 2015. 5(66): p. 53865-53869.
12. Huang, X.H., et al., Low defect concentration few-layer graphene using a two-step electrochemical exfoliation. Nanotechnology, 2015. 26(10).
13. Su, C.Y., et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. Acs Nano, 2011. 5(3): p. 2332-2339.
14. Huang, C.W., et al., Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon, 2011. 49(3): p. 895-903.
15. Marta, B., et al., Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films. Applied Surface Science, 2016. 363: p. 613-618.
16. Hsieh, C.T. and J.H. Hsueh, Electrochemical exfoliation of graphene sheets from a natural graphite flask in the presence of sulfate ions at different temperatures. Rsc Advances, 2016. 6(69): p. 64826-64831.
17. Paul, D.R. and L.M. Robeson, Polymer nanotechnology: Nanocomposites. Polymer, 2008. 49(15): p. 3187-3204.
18. Unalan, I.U., et al., Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. Rsc Advances, 2014. 4(56): p. 29393-29428.
19. Aneja, K.S., et al., Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale, 2015. 7(42): p. 17879-17888.
20. Mo, M., et al., Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets. RSC Adv., 2015. 5(70): p. 56486-56497.
21. Li, Y., et al., Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. Journal of Materials Chemistry A, 2014. 2(34): p. 14139-14145.
22. Christopher, G., M. Anbu Kulandainathan, and G. Harichandran, Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nanocomposites. Progress in Organic Coatings, 2015. 89: p. 199-211.
23. Mo, M.T., et al., Corrosion inhibition of functional graphene reinforced polyurethane nanocomposite coatings with regular textures. Rsc Advances, 2016. 6(10): p. 7780-7790.
24. Chang, K.C., et al., Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel (vol 66, pg 144, 2014). Carbon, 2015. 82: p. 611-611.
25. Liu, D., et al., Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surface & Coatings Technology, 2016. 286: p. 354-364.
26. Yu, Z.X., et al., Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings. Surface & Coatings Technology, 2015. 276: p. 471-478.
27. Liu, S., et al., Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings. Journal of Materials Science & Technology, 2016. 32(5): p. 425-431.
28. Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 2007. 143(1-2): p. 47-57.
29. Singh, B.P., et al., The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon, 2013. 61: p. 47-56.
30. Cai, D.Y., et al., High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Composites Science and Technology, 2012. 72(6): p. 702-707.
31. Tong, Y., S. Bohm, and M. Song, The capability of graphene on improving the electrical conductivity and anti-corrosion properties of Polyurethane coatings. Applied Surface Science, 2017.
32. Migkovic-Stankovic, V., et al., Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon, 2014. 75: p. 335-344.
33. Kirkland, N.T., et al., Exploring graphene as a corrosion protection barrier. Corrosion Science, 2012. 56: p. 1-4.
34. Raman, R.K.S., et al., Protecting copper from electrochemical degradation by graphene coating. Carbon, 2012. 50(11): p. 4040-4045.
35. Li, J., et al., Reinforcement of graphene and its derivatives on the anticorrosive properties of waterborne polyurethane coatings. Composites Science and Technology, 2016. 129: p. 30-37.
36. Gu, L., et al., Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Carboxylated Oligoanilines and Their Anticorrosion Coatings. Acs Applied Materials & Interfaces, 2015. 7(32): p. 17641-17648.
37. Pourhashem, S., et al., Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corrosion Science, 2017. 115: p. 78-92.
31.Polymer science learning center. (n.d.). Polyurethane. Retrieved from http://www.pslc.ws/macrog/epoxy.htms
32. Z.Y. Wang, E.H. Han, F.C. Liu, Z.H. Qian, L.W. Zhu, J. Mater. Sci. Technol. 30 (2014)
1036–1042.
33. L. Ai, Y. Liu, X.Y. Zhang, X.H. Ouyang, Z.Y. Ge, Synth. Met. 191 (2014) 41–46.
34. O. Rahman, M. Kashif, S. Ahmad, Prog. Org. Coat. 80 (2015) 77–8
35. Skiest I. Handbook of adhesives. 2nd ed. NewYork: VNR Company; 1978.
36. Gaw KO, Kakimoto M. Polyimide-epoxy composites. Adv Polym Sci 1999;140:109.
37. May CA. Epoxy resins: chemistry and technology. New York: Marcel Dekker; 1973.
38. Mc Adams LV, Gannon JA. Encyclopedia of polymer science and engineering, 2nd ed., vol. 6. Wiley Interscience; 1986.
39. Ellis B. Chemistry and technology of epoxy resins. UK: Blackie Academic and Professional; 1993
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明