博碩士論文 104323603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.145.173.112
姓名 范玉海(Ngoc-Hai Pham)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(The Research of Material Deposition Process for Bio-scaffold Fabrication in Tissue Engineering Applications)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在組織工程技術的最新進展中,已經能讓醫生能夠處理一些先前較難治療的病症。開發這種技術時,也已經製備了具有可控孔徑和孔隙率的支架,以研究細胞相互作用,如細胞增殖和分化。在本研究中,描述使用我們所開發的低溫沉積製造系統所製作出的支架。而該系統使用能夠製造三維微結構的技術並需要多種系統的整合,包括運動卡控制、移動系統、低溫系統、材料分配系統。另一方面,這項研究也通過利用這種低溫沉積製造的方式來研究我們所使用之材料(PLA)的沉積過程,並嘗試用不同方法去做實驗分析,如:梯形移動,片段擠出和可變移動速度的擠出分析以及提高支架寬度均勻的品質,特別是位於轉角處的材料過度堆積。
摘要(英) Recent developments in tissue-engineering techniques allow physicians to treat a range of previously untreatable conditions. In the development of such techniques, scaffolds with a controllable pore size and porosity have been manufactured to investigate cell interaction effects such as cell proliferation and differentiation. In this study, we describe the fabrication of scaffolds using a low-temperature deposition manufacturing system that we developed. This systems uses technology that enables the manufacture of three-dimensional microstructures and required the combination of several technologies, including motion card control (NI-motion card, National Instruments), movement system (Linmot system), low-temperature system, material dispesing system (Ultimus IV, NORDSON). In the other hand, this research will be researched the material (PLA) deposition process by this low-temperature deposition manufacturing and try to use our method such as: the trapezoidal move, the segment extrusion and the extrusion with variable moving velocities to analysis and improve the quality of the uniform width strands of scaffold and specially the over-accumulation of material located in the corner.
關鍵字(中) ★ 組織工程支架
★ 低溫沉積製造
★ 點膠系統
關鍵字(英) ★ Tissue Engineering Scaffold
★ Low-temperature Depositon Manufacturing
★ Dispensing System
論文目次 ABSTRACT V
Table of contents VIII
List of Figures X
Chapter 1: Introduction 1
1-1 BACKGROUND 1
1-2 LITERATURE REVIEW 2
1-3 RESEARCH PROCESS AND AIMS 15
1-4 THESIS OUTLINE 16
Chapter 2: Research Theory 17
2-1 TISSUE ENGINEERING 17
2-2 ADDITIVE MANUFACTURING FOR TISSUE ENGINEERING 20
2-3 LOW-TEMPERATURE DEPOSITION MANUFACTURING 24
Chapter 3: Research Method 28
3-1 THE INTRODUCTION AND CONFIGURATION OF THE EQUIPMENT IN LOW-TEMPERATURE DEPOSITION METHOD 28
3-2 SCAFFOLD BIO-MATERIAL FOR SCAFFOLD FABRICATION 39
3-3 THE PROCESS OF BIO-SCAFFOLD FABRICATION VIA LOW-TEMPERATURE DEPOSITION METHOD 39
3-4 CONTROL METHOD OF THE SCAFFOLD FABRICATION SCAFFOLD VIA LOW-TEMPERATURE DEPOSITION 51
3-5 INTERFACE AND CODING OF THE PROGRAM 56
Chapter 4: Results and Discussion 72
4-1 THE STRATEGY OF IMPROVING THE QUALITY OF SCAFFOLD 72
4-2 COMPARISION THE EXPERIMENTAL RESULT WITH THE DIFFERENT STRATEGIES 76
4-3 ANALYSIS THE EXPERIMENTAL RESULT WITH DIFFERENT SHAPES 88
4-4 ANALYSIS OF SURFACE MORPHOLOGY 93
Chapter 5: Conclusion and Future work 99
5.1 CONCLUSION 99
5.2 FUTURE WORK 99
References 101
參考文獻 [1] 楊志明,組織工程,九州圖書,民國94年。
[2] Y. S. Nam and T. G. Park, “Porous Biodegradable Polymeric Scaffolds Prepared by Thermally Induced Phase Separation”, Journal of Biomedical Materials Research. Part A, Vol. 47, pp.8-17, 1999.
[3] A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacant and R. Langer, “Laminated Three-dimensional Biodegradable Foams for Use in Tissue Engineering”, Biomaterials, Vol. 14, pp.323-330, 1993.
[4] D. C. Sin, X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan and T. Friis, “Polyurethane (PU) Scaffolds Prepared by Solvent Casting/Particulate Leaching (SCPL) Combined with Centrifugation”, Materials Science and Engineering: C, Vol. 30, pp.78-85, 2010.
[5] D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh and K. C. Tan, “Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling”, Journal of Biomedical Materials Research Part A, Vol. 55, pp.203-216, 2001.
[6] H. J. Yen, S. H. Hsu, C. S. Tseng, J. P. Huang and C. L. Tsai, “Fabrication of Precision Scaffolds Using Liquid-frozen Deposition Manufacturing for Cartilage Tissue Engineering”, Tissue Engineering Part A, Vol. 15, pp.965-975, 2009.
[7] Z. Xiong, Y. Yan, S. Wang, R. Zhang and C. Zhang, “Fabrication of Porous Scaffolds for Bone Tissue Engineering via Low-temperature Deposition”, Scripta Materialia, Vol. 46, pp.771-776, 2002.
[8] L. Liu, Z. Xiong, Y. Yan, R. Zhang, X. Wang and L. Jin, “Multinozzle Low-temperature Deposition System for Construction of Gradient Tissue Engineering Scaffolds”, Journal of Biomedical Materials Research, Vol. 88B, pp.254-263, 2009.
[9] C. B. Pham, K. F. Leong, T. C. Lim and K. S. Chian, “Rapid Freeze Prototyping Technique in Bio-plotters for Tissue Scaffold Fabrication”, Rapid Prototyping Journal, Vol. 14, pp.246-253, 2008.
[10] G. H. Kim, S. H. Ahn, H. Yoon, Y. Y. Kim and W. Chun, “A Cryogenic Direct-plotting System for Fabrication of 3D Collagen Scaffolds for Tissue Engineering”, Journal of Materials Chemistry, Vol. 19, pp.8817-8823, 2009.
[11] N. D. Doiphode, T. Huang, M. C. Leu, M. N. Rahaman and D. E. Day, “Freeze Extrusion Fabrication of 13–93 Bioactive Glass Scaffolds for Bone Repair”, Journal of Materials Science: Materials in Medicine, Vol. 22, pp.515-523, 2011.
[12] W. Zhang, M. C. Leu, Z. Ji and Y. Yan, “Rapid Freezing Prototyping with Water”, Materials & Design, Vol. 20, pp.139-145, 1999.
[13] Q. Liu and M. C. Leu, “Finite Element Analysis of Solidification in Rapid Freeze Prototyping”, Journal of Manufacturing Science and Engineering, Vol. 129, pp.810-820, 2007.
[14] S. Ma, X.Zheng, C. Zhang, H. Wang and H. Li, “Gelatin-Sodium Alginate Hydrogel Processing by Low-Temperature 3D Printing”, Intelligent Robotics and Applications, Vol. 1, pp.525-529, 2015.
[15] C. Y. Liu, Y. Li, L. Zhang, S. Mi, Y. Y. Xu and W. Sun, “Development of A Novel Low-temperature Deposition Machine Using Screw Extrusion to Fabricate Poly (L-lactide-co-glycolide) Acid Scaffolds”, Journal of Engineering in Medicine, Vol. 228, pp.593-606, 2014.
[16] J. S. Lee, J. M. Hong, J. W. Jung, J. H. Shim, J. H. Oh and D. W. Cho, “3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration”, Biofabrication, Vol. 6, pp.103-115, 2014.
[17] Y. Liu, S. Fang, Z. Han, Y. Liu and Y. Yu, “Pneumatic feeding system for low-temperature deposition manufacturing based on system idenitification”, Virtual and Physical prototyping, Vol.8, pp.5-6, 2013.
[18] 林研聖,「冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究」,國立中央大學,碩士論文,民國104年。
[19] C. H. Lin, J. M. Su and S. H. Hsu, “Evaluation of Type II Collagen Scaffolds Reinforced by Poly(ε-Caprolactone) as Tissue-engineered Trachea”, Tissue Engineering Part C: Methods, Vol. 14, pp.69-77, 2008.
[20] J. H. Park, J. M. Hong, Y. M. Ju, J. W. Jung, H. W. Kang, S. J. Lee, J. J. Yoo, S. W. Kim, S. H. Kim and D. W. Cho, “A Novel Tissue-engineered Trachea with A Mechanical Behavior Similar to Native Trachea”, Biomaterials, Vol. 62, pp.106-115, 2015.
[21] R. J. Morrison, S. J. Hollister, M. F. Niedner, M. G. Mahani, A. H. Park, D. K. Mehta, R. G. Ohye and G. E. Green, “Mitigation of Tracheobronchomalacia with 3D-printed Personalized Medical Devices in Pediatric Patients”, Science Translational Medicine, Vol. 7, pp. 285-296, 2015.
[22] G. H. Wu and S. H. Hsu, “Review: Polymeric-Based 3D Printing for Tissue Engineering”, Journal of Medical and Biological Engineering, Vol. 35, pp.285-292, 2015.
[23] B. Dhariwala, E. Hunt and T. Boland, “Rapid Prototyping of Tissue-engineering Constructs, Using Photopolymerizable Hydrogels and Stereolithography”, Tissue Engineering, Vol. 10, pp.1316-1322, 2004.
[24] C. Shuai, Z. Mao, H. Lu, Y. Nie, H. Hu and S. Peng, “Fabrication of Porous Polyvinyl Alcohol Scaffold for Bone Tissue Engineering Via Selective Laser Sintering”, Biofabrication, Vol. 5, 015014, 2013.
[25] 吳偉任,「組織工程用冷凍成型積層製造之固態水支撐結構生成研究」,國立中央大學,碩士論文,民國105年。
[26] H.Yen, S. Hsu, C. Tseng, J.Huang and ChingLin, “Fabrication of Precision Scaffold Using Liquid-Frozen Deposition Manufacturing for Cartilage Tissue Engineering”, Tissue Engineering ,Vol.15,pp.966-967, 2009.
[27] 杜方傑,「組織工程用冷凍成型製造系統之自動化製作流程開發」,國立中央大學,碩士論文,民國104年。
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2017-11-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明