博碩士論文 104323608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.191.150.207
姓名 阮武陵(Nguyen Vu Linh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 神經內視鏡的球面解耦機械手臂設計
(Design of a Spherical Decoupled Robotic Manipulator for Neuro-endoscopy)
相關論文
★ 新型機電整合之多色3-D列印機★ Workspace Characterization of a 3-RRR Spherical Parallel Mechanism
★ 對於遠程超聲波檢查機器人機械手控制裝置的設計★ Design of a Spherical Reconfigurable Linkage for the Control of Mechanism Center of Rotation
★ Formulation of a New Index for the Evaluation of Mechanism Workspace★ Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic Assisted Craniotomy
★ Identification of Spherical Mechanism Parameter Errors using a Genetic Algorithm★ Kinematic Design of Double Pantographic Linkage for the Tele-Echography on Intra-Incubated Newborns
★ Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality★ 應用於股骨復位手術中之機器人機構設計
★ Design of an Augmented Clamping Instrument for Advanced Aneurysm Surgery★ Contribution to the Design of a Robotic Platform for Liposuction
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 神經手術內視鏡是腦神經外科常使用的手術設備,用以協助腦神經外科手術醫師透過微小創口窺見患者大腦內部。使用時,醫生需先在病人的顱骨上鑽孔,然後將內視鏡插入腦部到達患處,再透過其內部之空心管,將另一手術器械從中插入以進行手術動作。由於神經內視鏡必須長時間保持固定姿態,且需要定位調整,因此臨床上需要高靈巧性之扶持機器人,協助醫師對抗疲勞或晃動等問題。
本計畫目標是設計一部神經內視鏡手術扶持機器人系統,該系統將由一個機器人操縱。我們將提出一種創新的球面解耦機構 (Spherical Decoupled Mechanism, SDM),該設計具有獨立旋轉自由度。我們亦將針對上述醫療應用需求進行機構之尺寸最佳化設計。
首先將擷取內視鏡於臨床操作的運動姿態數據,然後以此數據進行機器人機構的最佳設計。我們將對此新穎的SDM進行完整的運動學理論分析,然後透過設計變數的定義、運動學和速度模型的建立,進行該操縱器的最佳化設計,並且打樣製作初始概念原型,最後製作完整的神經內視鏡手術機器人系統。
摘要(英)
Minimally invasive surgery (MIS) is an advanced technique that intervenes in the human body through small incisions. To enhance the efficiency of MIS operation, robotic assisted surgery has recently been employed. However, due to high cost associated with high technology and rigorous safety requirements, incorporating robotic technology into the daily surgical practice is still challenging. Neurosurgery is one of the most demanding surgical specialties in term of precision requirement and operative field because of the complexity of anatomical region involved. Although many studies have addressed the specific details of surgical robots, there is relatively very little literature and robotic assisted neurosurgery is still being extremely challenging. In fact, the literature review of robotic systems for neuro-endoscopy has shown that their concepts are mostly based on industrial manipulator.
With the aim to design a robotic manipulator for neuro-endoscopy, a novel mechanical architecture is proposed in this study. The novel mechanism is called the 5-bar Spherical Decoupled Mechanism (SDM). The idea of offering the novel mechanism stems from the concept of the 5-bar Spherical Linkage (5-BSL). The SDM is considered as a parallel architecture that allows generating a Remote Center of Motion (RCM) of two angular decoupled Degrees of Freedom (DoF). The decoupled characteristic is demonstrated by its kinematic and velocity models, and simplifies the control strategy for manipulation. Besides, the architectural improvement induces the suppression of parallel singularity that almost parallel mechanisms suffer from over their workspaces. The workspace and kinematic performance of the SDM are also presented. The investigation not only concentrates on its mechanical aspects, but also on its capabilities applied to neuro-endoscopy. As a result, a medical-oriented optimization based on experimental data, kinematic performance, and architectural compactness allows obtaining the optimum configuration of the proposed mechanism. The optimum mechanism is then used as a base for the mechanical design of robotic manipulator prototype.
關鍵字(中) ★ 神經內視鏡
★ 機器人輔助手術
★ 球面五連桿機構
★ 並聯機構
★ 解耦機構
關鍵字(英) ★ Neuro-endoscopy
★ Robotic Assisted Surgery
★ Five-Bar Spherical Linkage
★ Parallel Mechanism
★ Decoupled Mechanism
★ Remote Center of Motion
論文目次
摘 要 i
English Abstract ii
Acknowledgments iii
Table of Contents iv
List of Figures vii
List of Tables xi
Explanation of Symbols xii
1. Introduction 1
1-1. Thesis outline 3
1-2. Robotic systems for laparoscopy 5
1-3. Robotic systems for neuro-endoscopy 9
1-4. Technical scope of surgical robotics 15
2. Specification Analysis 20
2-1. Motion capture 20
2-1-1. Brief of tracking systems 20
2-1-2. Experimental protocol 26
2-2. Data acquisition 29
3. Topological Synthesis 37
3-1. Perspective of RCM mechanisms 37
3-2. Parallel RCM mechanisms 42
3-3. Decoupled parallel RCM mechanisms 44
3-4. The 5-bar spherical decoupled mechanism 48
4. Kinematic Analysis 51
4-1. Decoupled motion representation 51
4-2. Kinematic model 53
4-2-1. Forward Kinematics 53
4-2-2. Inverse kinematics 54
4-3. Velocity Model 56
4-4. Singularity analysis 57
4-5. Trajectory analysis 61
5. Performance Evaluation 63
5-1. Workspace representation 63
5-2. Kinematic performance 67
5-2-1. Manipulability 67
5-2-2. Motion transmission and kinematic performance improvement 73
6. Medical-Oriented Optimization 81
6-1. Technical requirement of robotic manipulator 81
6-2. Concept adaptation of the 2-RRR SDM 82
6-3. Multi-objective optimization 85
6-3-1. Constraint and criteria indices 85
6-3-2. Computation and results 88
7. Manipulator Design 95
7-1. Design method of the robotic manipulator 95
7-1-1. Design of the RCM mechanism 95
7-1-2. Design of the manipulator end-effector 98
7-2. Mechatronic implementation of the manipulator 100
8. Conclusion 102
Perspective 105
References 106
Appendix A 115
Appendix B 116
Appendix C 117
Appendix D 118

參考文獻
[1] G. S. Litynski, “Laparoscopy - The Early Attempts: Spotlighting Georg Kelling and Hans Christian Jacobaeus”, Journal of the Society of Laparoendoscopic Surgeons (JSLS), pp. 83-85, 1997.
[2] A. Govindarajan, “Robot-Assisted Surgery: A Review”, University of Toronto Medical Journal, Vol. 78, No. 2, 2001.
[3] B. M. Kraft, C. Jäger, K. Kraft, B. J. Leibl, R. Bittner, “The AESOP robot system in laparoscopic surgery”, Surgical Endoscopy And Other Interventional Techniques, Vol. 18(8), pp. 1216-1223, 2004.
[4] M. Ghodoussi, S. E. Butner, Y. Wang, “Robotic Surgery - The Transatlantic Case”, Proceedings of IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1882–1888, Washington DC, USA, 2002.
[5] D. Sanchez, M. Black, S. Hammond, “A Pivot Point Arm for a Robotic System used to perform a Surgical Procedure”, European Patent No. 1254642, 2002.
[6] G. S. Guthart, J. K Salisbury, “The Intuitive Telesurgery System: Overview and Application”, Proceedings of IEEE International Conference on Robotics and Automation, Vol.1, pp. 618–621, San Francisco, California, 2000.
[7] T. A. Morley, D. T. Wallace, “Roll-Pitch-Roll Surgical Tool”, United States Patent Application Publication, US 2011/0213346 A1, 2011.
[8] U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer, F. Hacker, L. Le-Tien, A. Albu-Schäffer, R. Konietschke, M. Grebenstein, R. Warpup, R. Haslinger, M. Frommberger, G. Hirzinger, “The DLR MIRO: A versatile lightweight robot for surgical applications”, Industrial Robot: An International Journal, Vol. 35(4), pp. 324 – 336, 2008.
[9] U. Hagn, T. Ortmaier, R. Konietschke, B. Kuebler, U. Seibold, A. Tobergte, M. Nickl, S. Joerg, G. Hirzinger, “Telemanipulators for Remote Minimally Invasive Surgery”, IEEE Robotics and Automation Magazine, Vol. 15(4), pp. 28-38, 2008.
[10] U. Hagn, R. Konietschke, A. Tobergte, M. Nickl, S. Jörg, B. Kübler, G. Passig, M. Gröger, F. Fröhlich, U. Seibold, L. Le-Tien, A. Albu-Schäffer, A. Nothhelfer, F. Hacker, M. Grebenstein, G. Hirzinger, “DLR MiroSurge: A versatile system for research in endoscopic telesurgery”, International Journal of Computer Assisted Radiology and Surgery, Vol. 5(2), pp. 183–193, 2009.
[11] R. Konietschke, Ulrich Hagn, M. Nickl, S. Jorg, A. Tobergte, G. Passig, U. Seibold, L. L. Tien, B. Kubler, G. Martin, Fr. Florian, C. Rink, A. Schaffer, M. Grebenstein, T. Ortmaier, G. Hirzinger, “The DLR MiroSurge - A Robotic System for Surgery”, IEEE International Conference on Robotics and Automation, pp. 1589 – 1590, Kobe, Japan, 2009.
[12] J. U. Stolzenburg, T. Franz, P. Kallidonis, D. Minh, A. Dietel, J. Hicks, M. Nicolaus, A. Al-Aown, E. Liatsikos, “Comparison of the FreeHand robotic camera holder with human assistants during endoscopic extraperitoneal radical prostatectomy”, BJU International, Vol. 107(6), pp. 970-974, 2011.
[13] R. J. Wang, “Robotic Arm with Spherical Linkage”, U.S. Patent 0 202 780, 2015.
[14] J. A. Long, P. Cinquin, J. Troccaz, S. Voros, P. Berkelman, J. L. Descotes, C. Letoublon, J. J. Rambeaud, “Development of miniaturized light endoscope holder robot for laparoscopic surgery”, Journal of Endourology, Vol. 21, No. 8, pp. 911–914, 2007.
[15] B. Herma, B. Dehez, K. Tran Duy, B. Raucent, E. Dombre, S. Krut, “Design and preliminary in vivo validation of a robotic laparoscope holder for minimally invasive surgery”, International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 5(3), pp. 319-326, 2009.
[16] L. Van Den Bedem, N. Rosielle, M. Steinbuch, “Design of a slave robot for laparoscopic and thoracoscopic surgery”, Proceedings 20th International Conference for Medical Innovation and Technology, Vienna, Austria, 2008.
[17] A. L. Benabid, P. Cinquin, S. Lavalle, J. F. Le Bas, J. Demongest, J. de Rougemont, “Computer-driven robot for stereotactic surgery connected to CT-scan and magnetic resonance imaging; technological design and preliminary results”, Appl Neurophysiol, Vol. 50 (1-6), pp. 153–154, 1987.
[18] T. R. K. Varma, P. Eldridge, “Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery”, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 2 (2), pp. 107–113, 2006.
[19] G. Deacon, A. Harwood, J. Holdback, D. Maiwand, M. Pearce, I. Reid, M. Street, J. Taylor, “The Pathfinder image-guided surgical robot”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 224 (5), pp. 691–713, 2010.
[20] J. Brodie, S. Eljamel, “Evaluation of a neurosurgical robotic system to make accurate burr holes”, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 7 (1), pp. 101–106, 2011.
[21] P. S. Morgana, T. Carterb, S. Davisb, A. Sepehria, J. Punta, P. Byrnea, A. Moodya, P. Finlay, “The application accuracy of the Pathfinder neurosurgical robot”, International Congress Series, Vol. 1256, pp. 561 – 567, 2003.
[22] M. S. Eljamel “Robotic neurological surgery applications: accuracy and consistency or pure fantasy”, Stereotactatic and Functional Neurosurgery, Vol. 87 (2), pp. 88–93, 2009.
[23] S. Briot, C. Baradat, S. Guégan, V. Arakelian, “Contribution to the mechanical behavior improvement of the robotic navigation device surgiscope”, ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 8, pp. 653-661, Las Vegas, USA, 2007.
[24] ISIS: Intelligent Surgical Instruments & Systems (homepage: http://www.isis-robotics.com)
[25] The Medtech company (homepage: http://www.medtech.fr/)
[26] M. Wapler, V. Urban, T. Weisener, J. Stallkamp, M. Durr, A. Hiller, “A Stewart Platform for Precision Surgery”, Transactions of the Institute of Measurement and Control, Vol. 25(4), pp. 329–334, 2003.
[27] M. Zimmermann, R. Krishnan, A. Raabe, V. Seifert, “Robot-Assisted Navigated Endoscopic Ventriculostomy: Implementation of a New Technology and First Clinical Results”, Acta Neurochirurgica, Vol. 146(7), pp. 697-704, 2004.
[28] B. Cabuk, S. Ceylan, I. Anik, M. Tugasaygi, S. Kizir, “A Haptic Guided Robotic System for Endoscope Positioning and Holding”, Journal of Turkish Neurosurgery, Vol. 25(4), pp. 601-607, 2015.
[29] V. Trevillot, R. Sobral, D. Dombre, P. Poignet, B. Herman, B. Crampette, “Innovative endoscopic sino-nasal and anterior skull base robotics”, International Journal of Computer Assisted Radiology and Surgery, Vol. 8(6), pp. 977-987, 2013.
[30] M. Niccolini, V. Castelli, C. Diversi, B. Kang, F. Mussa, E. Sinibaldi, “Development and Preliminary Assessment of a Robotic Platform for Neuroendoscopy Based on a Lightweight Robot”, International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 12(1), pp. 4-17, 2016.
[31] Faro Technologies (homepage: http://www.faro.com/)
[32] E. Monahan, K. Shimada, “A study of user performance employing a computer-aided navigation system for arthroscopic hip surgery”, International Journal of Computer Assisted Radiology and Surgery, Vol. 2 (3), pp. 245–252, 2007.
[33] A. S. Carney, M. Patel, D. L. Baldwin, H. B. Coakham, D. R. Sandeman, “Intra-operative image guidance in otolaryngology – The use of the ISG viewing wand”, The journal of Laryngology and Otology, Vol. 110 (4), pp. 322-327, 1996.
[34] P. K. Doshi, L. Lemieux, D. R. Fish, S. D. Shorvon, W. H. Harkness, D. G. Thomas, “Frameless stereotaxy and interactive neurosurgery with the ISG viewing wand”, Advances in Stereotactic and Functional Neurosurgery, the Acta Neurochirurgica Supplementum, Vol. 64. pp. 49–53, 1995.
[35] F. H. Raab, E. B. Blood, T. O. Steiner, H. R. Jones, “Magnetic Position and Orientation Tracking System”, IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-15 (5), pp. 709-718, 1979.
[36] Y. Wang, C. Spangler, B. L. Tai, A. J. Shih, “Positional Accuracy And Transmitter Orientation of the 3D Electromagnetic Tracking System”, Journal of Measurement Science and Technology, Vol. 24 (10), pp. 105-114, 2013.
[37] W. Birkfellner, J. Hummel, E. Wilson, K. Cleary, “Image-Guided Interventions - Chapter 2: Tracking Devices” Springer Science and Business Media, eBook ISBN: 978-0-387-73858-1 LLC, 2008.
[38] Polhemus - AC electromagnetic technology (Page: http://polhemus.com/motion-tracking/all-trackers/fastrak#collapseTwo)
[39] Aurora System (Page: http://www.ndigital.com/medical/products/aurora/)
[40] E. B. Blood, “Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields”, US Patent Specification 4945305, 1990.
[41] Ascension Technology Corp (Page: http://www.ascension-tech.com/products/trakstar-drivebay/)
[42] V. V. Kindratenko, “A survey of electromagnetic position tracker calibration techniques”, Virtual Real. Res. Dev., Vol. 5 (3), pp. 169-182, 2000.
[43] R. Wong, J. Jivraj, V. X. D. Yang, “Perspectives - Current Limitations and Opportunities for Surgical Navigation”, University of Toronto Medical Journal, Vol. 92 (1), pp. 7-9, 2014.
[44] MicronTracker - ClaroNav, (Page: http://www.claronav.com/microntracker/)
[45] NDI Polaris Family, (Page: http://www.ndigital.com/medical/products/polaris-family/)
[46] Fusion tracking - Atracsys (Page: https://atracsys.com/web/eng/measurement/products_2)
[47] StealthStation - Medtronic (Page: http://www.medtronic.com/)
[48] Vicon - Nexus (Page: https://www.vicon.com)
[49] LaserBIRD 2 - Ascension Technology
(Page: http://www.ascension-tech.com/products/laserbird-2/)
[50] R. H. Taylor, D. Stoianovici, “Medical Robotics in Computer-Integrated Surgery”, IEEE Transactions on Robotics and Automation, Vol. 19 (5), pp. 765-781, 2003.
[51] C. H. Kuo, J. S. Dai, “Robotics for Minimally Invasive Surgery: A Historical Review from the Perspective of Kinematics”, International Symposium on History of Machines and Mechanisms, pp. 337-354, 2009.
[52] D. Kim, E. Kobayashi, T. Dohi, I. Sakuma, “A new compact MR-compatible surgical manipulator for minimally invasive liver surgery”, International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI, Vol. 2488. Springer, pp. 99-106, Berlin, Heidelberg, 2002.
[53] S. J. Harris, F. Arambula-Cosio, Q. Mei, R. D. Hibberd, B. L. Davies, J. E. A. Wickham, M. S. Nathan, B. Kundu, “The Probot—an active robot for prostate resection”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 211 (4), pp. 317-325, 1997.
[54] K. Masamune, E. Kobayashi, Y. Masutani, M. Suzuki, T. Dohi, H. Iseki, K. Takakura, “Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery”, Journal of Image Guided Surgery, Vol. 1 (4), pp. 242-248, 1995.
[55] H. Kang, J. T. Wen, “Robotic assistants aid surgeons during minimally invasive procedures”, IEEE Engineering in Medicine and Biology Magazine, Vol. 20 (1), pp. 94-104, 2001.
[56] G. Zong, X. Pei, J. Yu, S. Bi, “Classification and Type Synthesis of 1-DoF Remote Center of Motion Mechanisms”, Mechanism and Machine Theory, Vol. 43 (12), pp. 1585-1595, 2008.
[57] R. H. Taylor, J. Funda, D. Larose, M. Treat “A telerobotic system for augmentation of endoscopic surgery”, Proceedings of IEEE Engineering in Medicine and Biology Society, Vol. 3, pp. 1054–1056, Paris, France, 1992.
[58] S. E. Salcudean, W. H. Zhu, P. Abolmaesumi, S. Bachmann, P. D. Lawrence, “A robot system for medical ultrasound”, Robotics Research – International Symposium, Vol .9, pp.195-202, 2000.
[59] J. Rosen, J. D. Brown, L. Chang, M. Barreca, M. Sinanan, B. Hannaford, “The BlueDRAGON - A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo”, Proceedings of IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1876-1881, Washington DC, USA, 2002.
[60] B. Davies, S. Starkie, S. J. Harris, E. Agterhuis, V. Paul, L. M. Auer, “Neurobot: A special-purpose robot for Neurosurgery”, Proceedings of IEEE International Conference on Robotics and Automation, Vol. 4, pp. 4103-4108, San Francisco, USA, 2000.
[61] X. Dai, B. Zhao, S. Zhao, Y. He, Y. Sun, P. Gao, Y. Hu, J. Zhang, “An Endoscope Holder with Automatic Tracking Feature for Nasal Surgery”, Proceedings of the IEEE International Conference on Information and Automation, pp. 1-6, Ningbo, China, 2016.
[62] H. D. Taghirad, “Parallel robot, mechanism and control”, International Standard Book Number: 978-1-4665-5576-1 (Hardback), 2012.
[63] J. Li, G. Zhang, A. Muller, S. Wang, “A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes”, ASME Journal of Mechanical Design, Vol. 135 (9), 091009, 2013.
[64] J. Li, Y. Xing, K. Liang, S. Wang, “Kinematic Design of a Novel Spatial Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot”, ASME Journal of Medical Devices, Vol. 9 (1), 011003, 2015.
[65] R. Beira, L. Santos-Carreras, G. Rognini, H. Bleuler, R. Clavel, “Dionis: A novel remote-center-of-motion parallel manipulator for Minimally Invasive Surgery”, Applied Bionics and Biomechanics, Vol. 8 (2), pp. 191–208, 2011.
[66] C. Gosselin, J. Hamel, “The Agile Eye: A High-Performance Three-Degree of Freedom Camera-Orienting Device”, Proceedings of IEEE International Conference on Robotics and Automation, pp. 781-786, San Diego, USA, 1994.
[67] A. Chaker, A. Mlika, M. A. Laribi, L. Romdhane, S. Zeghloul, “Synthesis of spherical parallel manipulator for dexterous medical task”, Frontiers of Mechanical Engineering, Vol.7 (2), pp.150-162, 2012.
[68] A. Yu , I. A. Bonev , P. Zsombor-Murray, “New XY-Theta Positioning Table with Partially Decoupled Parallel Kinematics”, IEEE International Symposium on Industrial Electronics, Vol. 4, pp. 3108-3112, Quebec, Canada, 2006.
[69] Y. Jin, I. M Chen, G. Yang, “Kinematic design of a family of 6-DoF partially decoupled parallel manipulators”, Mechanism and Machine Theory, Vol. 44 (5), pp. 912–922, 2009.
[70] Y. P. Zhu, F. Zhang, “A Novel Remote Center-of Motion Parallel manipulator for Minimally Invasive Celiac Surgery”, International Journal of Research in Engineering and Science, Vol. 3 (8), pp. 15-19, 2015.
[71] C. H. Kuo, J. S. Dai, “Kinematics of a fully-decoupled remote center-of-motion parallel manipulator for minimally invasive surgery”, ASME Journal of Medical Devices, Vol. 6 (2), 021008, 2012.
[72] Y. Zhang, K. L. Ting, “Design and Analysis of a Spatial 3-DoF Parallel Manipulator with 2T1R-Type”, International Journal of Advanced Robotic Systems, Vol. 10 (5), pp. 226, 2013.
[73] M. Ouerfelli, V. Kumar, “Optimization of a Spherical Five-Bar Parallel Drive Linkage”, ASME Journal of Mechanical Design, Vol. 116 (1), pp. 166–173, 2008.
[74] B. M. Schena, “Center Robotic Arm with Five-Bar Spherical Linkage for Endoscopic Camera”, International Patent No. WO2007114975, 2007.
[75] C. Wu, X. J. Liu, L. Wang, J. Wang, “Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility”, ASME Journal of Mechanical Design, Vol. 132 (3), 031002, 2010.
[76] L. J. Zhang, Y. W. Niu, Y. Q. Li, Z. Huang, “Analysis of the Workspace of 2-DoF Spherical 5R Parallel Manipulator,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1123-1128, Orlando, USA, 2006.
[77] M. J. H. Lum, J. Rosen, M. N. Sinanan, B. Hannaford, “Kinematic Optimization of a 2-DoF Spherical Mechanism for a Minimally Invasive Surgical Robot”, Proceedings of the IEEE International Conference on Robotics and Automation, pp. 829-834, LA, USA, 2004.
[78] T. Yoshikawa, “Manipulability and redundancy control of robotic mechanisms”, Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1004-1009, USA, 1985.
[79] C. Gosselin, J. Angeles, “Singularity analysis of closed-loop kinematic chains”, IEEE Transactions Robotics and Automation, Vol. 6 (3), pp. 281-290, 1990.
[80] J. H. Choi, T. W. Seo, J. W. Lee, “Singularity Analysis of a Planar Parallel Mechanism with Revolute Joints based on a Geometric Approach”, International Journal of Precision Engineering and Manufacturing, Vol. 14 (8), pp. 1369-1375, 2013.
[81] F. C. Park, J. W. Kim, “Singularity analysis of closed kinematic chains”, ASME Journal of Mechanical Design, Vol. 121 (1), pp. 32-38, 1999.
[82] T. Essomba, M. A. Laribi, S. Zeghloul, G. Poisson, “Optimal synthesis of a spherical parallel mechanism for medical application”, Robotica, Vol. 34(3), pp. 671-686, 2016.
[83] J. Angeles, C. Lopez-Cajun, “The dexterity index of serial-type robotic manipulators”, ASME Trends and Developments in Mechanisms, Machines and Robotics, pp. 79-84, 1988.
[84] C. Gosselin, J. Angeles, “A global performance index for the kinematic optimization of robotic manipulators”, ASME Journal of Mechanical Design, Vol. 113 (3), pp. 220-226, 1991.
[85] P. W. Eschenbach, D. Tesar, “Link length bounds on the four bar chain”, ASME Journal of Engineering for Industry, Vol. 93 (1), pp. 287-293, 1971.
[86] K. M. Khader, “Nomograms for Synthesizing Crank Rocker Mechanism with Desired Optimum Range of Transmission Angles”, International Journal of Mining, Metallurgy & Mechanical Engineering (IJMMME), Vol. 3 (3), pp. 155-160, 2015.
[87] A. S. Hall, T. P. Goodman, “Kinematics and linkage design”, Journal of Applied Mechanics, Vol. 28 (4), pp. 639, 1961.
[88] D. C. Tao, “Applied linkage synthesis”, Addison-Wesley, Reading, Vol. 64, pp 7-12, 1964.
[89] J. J. Cervantes-Sanchez, J. C. Hernández-Rodriguez, E. J. González-Galvan, “On the 5R Spherical, Symmetric Manipulator: Workspace and Singularity Characterization”, Mechanism and Machine Theory, Vol. 39 (4), pp. 409-429, 2004.
[90] M. Caramia, P. Dell’Olmo, “Multi-objective management in Freight Logistics”, Increasing Capacity, Service Level and Safety with optimization Algorithms, Springer Science and Business Media, 2008.
[91] C. Wu, X. J. Liu, J. Wang, “Force Transmission Analysis of Spherical 5R Parallel Manipulators”, ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, pp. 331-336, London, UK, 2009.
指導教授 伊泰龍(Terence Essomba) 審核日期 2017-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明