博碩士論文 104324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.80.160.29
姓名 吳佳蓉(Chia-Jung Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
(Mixture of ionic liquid and organic carbonate electrolyte for high voltage LiNi0.5Mn1.5O4 cathode)
相關論文
★ 固相反應法製備固態電解質Li7La3Zr2O12應用於鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究的第一部分,主要比較離子液體1 M LiPF6/PMP-TFSI與1 M LiTFSI/PMP-TFSI與傳統有機電解液1 M LiPF6/EC-DEC應用在高電壓LiNi0.5Mn1.5O4/Li半電池的差別(藥品全名列於3-1節)。1 M LiPF6/EC-DEC電解液具有低黏度與高離子導電率,在室溫時高速2 C與低速0.1 C的放電電容值的維持率也高達91%;但是,在高電壓環境下PF6-即便能夠鈍化鋁基材,EC-DEC卻會發生氧化分解的情況而導致在長時間壽命卻不如離子液體電解液。另外,由於其本身熱穩定性不佳,因此在高溫50 oC未能有正常充放電行為。離子液體電解液中,PF6-與TFSI-都具有良好的鈍化鋁基材能力;並且在高電壓下具有>5 V(Li/Li+)的氧化極限;其本身的熱穩定性良好,因此在50 oC下能夠得到比室溫還要良好的充放電性能。這些優勢都說明了離子液體是比傳統有機還要適合做為高電壓電解液。然而,離子液體本身在室溫下的黏度高達約200 cP是傳統有機電解液的數十倍之多,因此離子液體在室溫1 C經過200圈的放電電容值的維持率高達99%,但是在高速2 C與低速0.1 C的放電電容值的維持率卻僅僅只有20-30%,是離子液體必須克服的。
延續第一部分的結果,在第二部分針對1 M LiTFSI/PMP-TFSI改質。首先在離子液體中導入有機碳酸酯成功降低離子液體的黏度,但導入碳酸酯卻伴隨嚴重的鋁腐蝕反應。因此在混合系統的基礎下(PMP-TFSI與EC-DEC 依不同比例混合,在本文以” % IL “ 表示離子液體的比例),提高鋰鹽濃度來抑制鋁腐蝕反應。在眾多嘗試中,發現2 M LiTFSI/75% IL、3 M LiTFSI/25% IL與3 M LiTFSI/50% IL成功抑制鋁腐蝕並且得到良好的循環充放電性能,其中2 M LiTFSI/75% IL與3 M LiTFSI/25% IL具有比1 M LiTFSI/100% IL更加優良的高速性能,在2 C與0.1 C放電電容值的維持率分別達到45%與60%。但是距離傳統有機的91%仍有待改進的空間。
在第二部分發現混合系統確實有其優勢但以LiTFSI作為鋰鹽的高速維持率仍有不足之處,所以在此章節將鋰鹽更換為陰離子較小的LiPF6期望得到更良好的結果。相比LiTFSI的混合系統,LiPF6展現出較高的離子導電度、較低的黏度,而且在相同濃度及比例下的側反應電流進一步被降低。因此在2 M LiPF6/25% IL、2 M LiPF6/50% IL、2 M LiPF6/75% IL、3 M LiPF6/25% IL及3 M LiPF6/50% IL都得到比LiTFSI的混合系統更加良好的200圈與2 C維持率。其中3 M LiPF6/25% IL更展現出跟傳統有機電解液相差不遠的90.9 %高速維持率而且200圈的循環壽命維持率更高於有機電解液的93%來到97%。
摘要(英) In the fist part of research, we compare the difference between ionic liquid and organic electrolyte. Organic electrolyte demonstrate low viscosity, high conductivity and high rate capability. PF6- is able to passivate Al substrate, however, EC-DEC will deposit at high voltage. Electrolyte deposition cause serious capacity fade during cyclelife. On the hand, poor thermal ability is drawback of organic electrolyte that can not charge and discharge normally. Ionic liquid electrolyte demonstrate good electrochemical stability and thermal stability, so it demonstrate nice charge/discharge properties at 50 oC. In summary, ionic liquid electrolyte is more suitiable choice for high voltage lithium ion battery.
In the second part of research, introducing carbonate into ionic liquid electrolyte is the first strategy of ionic liquid electrolyte modification. However, these electrolyte are suffer from serious Al corrosion. High concentration electrolyte is a good way which inhibit Al corrosion effectively. 2 M LiTFSI/75% IL, 3 M LiTFSI/25% IL and 3 M LiTFSI/50% IL demonstrate good charge and discharge performance. 2 M LiTFSI/75% IL and 3 M LiTFSI/25% IL promising high rate performance than ionic liquid electrolyte (1 M LiTFSI/PMP-TFSI).
In the third part of the research, using LiPF6 as lithium salt improve high rate performance and cyclebility. 3 M LiPF6/25% IL is the best condition of these electrolyte. Compare to oraganic electrolyte, it show competitive high rate performance and better cycle retention.
關鍵字(中) ★ 鋰離子電池
★ 耐高壓電解液
關鍵字(英)
論文目次 摘要 i
Abstract iii
目錄 vii
圖目錄 x
一、 緒論 1
1-1 前言 1
1-2 研究動機 2
二、 文獻回顧 4
2-1 高電壓正極材料用於鋰離子電池 4
2-1-1 LiNi0.5Mn1.5O4高電壓正極材料 6
2-1-2鋁基材之腐蝕 14
2-2 耐高壓電解液 17
2-2-1 高濃度電解液用於高電壓LNMO 17
2-2-2 離子液體電解液於鋰離子電池之研究現況 19
2-2-3 離子液體用於高電壓LNMO 30
2-2-4 混合型電解液之發展 35
三、 實驗方法及步驟 58
3-1 實驗藥品 58
3-2 電極製備 58
3-2-1 工作電極塗佈 58
3-2-2 鈕扣型電池製備 59
3-3 電解液配製 59
3-4 材料分析 60
3-5 電解液物化性分析 60
3-6 電化學性質測試 61
四、 結果與討論 62
4-1 離子液體與有機電解液應用於LiNi0.5Mn1.4O4之分析 62
4-1-1 LiNi0.5Mn1.4O4之結構定義 62
4-1-2 電解液之黏度與離子導電度 63
4-1-3 TGA熱穩定分析 66
4-1-4 燃燒測試 67
4-1-5 電解液之氧化電位極限 69
4-1-6 電解液之鋁腐蝕現象 70
4-1-7 定電流充放電 72
4-1-8 交流阻抗分析 78
4-2 LiTFSI混合型電解液應用於LNMO正極 80
4-2-1 電解液之黏度與離子導電度 80
4-2-2 電解液之結構分析 83
4-2-3 電解液之鋁腐蝕探討 86
4-2-4 定電流充放電 90
4-2-5 交流阻抗分析 100
4-3 LiPF6混合型電解液 103
4-3-1 電解液之離子導電度與黏度 103
4-3-2 TGA之熱穩定性測試 106
4-3-3 燃燒測試 107
4-3-4 電解液之側反應電流 109
4-3-5 定電流充放電 111
4-3-6 交流阻抗分析 121
五、 結論 124
六、 引用文獻 125
參考文獻 1. Sakaebe, H. and H. Matsumoto, N-Methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13–TFSI)–novel electrolyte base for Li battery. Electrochemistry Communications, 2003. 5(7): p. 594-598.
2. Ma, J., et al., Surface and interface issues in spinel LiNi0. 5Mn1. 5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater, 2016. 28(11): p. 3578-3606.
3. Xu, G., et al., Strategies for improving the cyclability and thermo-stability of LiMn 2 O 4-based batteries at elevated temperatures. Journal of Materials Chemistry A, 2015. 3(8): p. 4092-4123.
4. Liu, D., et al., Spinel materials for high-voltage cathodes in Li-ion batteries. Rsc Advances, 2014. 4(1): p. 154-167.
5. Zhong, Q., et al., Synthesis and Electrochemistry of LiNi x Mn2? x O 4. Journal of The Electrochemical Society, 1997. 144(1): p. 205-213.
6. Gummow, R.J., A. de Kock, and M.M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics, 1994. 69(1): p. 59-67.
7. Bittihn, R., R. Herr, and D. Hoge, The SWING system, a nonaqueous rechargeable carbon/metal oxide cell. Journal of Power Sources, 1993. 43(1): p. 223-231.
8. Sigala, C., et al., Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 ? yO4 (0 ? y ? 1). Solid State Ionics, 1995. 81(3): p. 167-170.
9. Zhong, Q., et al., Synthesis and Electrochemistry of LiNi x Mn2???x ?O?4. Journal of The Electrochemical Society, 1997. 144(1): p. 205-213.
10. Kim, J.-H., et al., Comparative Study of LiNi0. 5Mn1. 5O4-δ and LiNi0. 5Mn1. 5O4 Cathodes Having Two Crystallographic Structures: Fd 3 m and P 4332. Chemistry of materials, 2004. 16(5): p. 906-914.
11. Xia, H., et al., Electrochemical properties of nonstoichiometric LiNi0. 5Mn1. 5O4? δ thin-film electrodes prepared by pulsed laser deposition. Journal of the Electrochemical Society, 2007. 154(8): p. A737-A743.
12. Hirayama, M., et al., Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. Journal of the American Chemical Society, 2010. 132(43): p. 15268-15276.
13. Chemelewski, K.R., et al., Octahedral and truncated high-voltage spinel cathodes: the role of morphology and surface planes in electrochemical properties. Journal of Materials Chemistry A, 2013. 1(10): p. 3347-3354.
14. Aurbach, D., et al., New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. Journal of power sources, 1999. 81: p. 95-111.
15. Chen, Z., et al., Polyhedral ordered LiNi 0.5 Mn 1.5 O 4 spinel with excellent electrochemical properties in extreme conditions. Journal of Power Sources, 2015. 274: p. 265-273.
16. Chen, Z., et al., Polyhedral LiNi 0.5 Mn 1.5 O 4 with excellent electrochemical properties for lithium-ion batteries. Journal of Materials Chemistry A, 2014. 2(32): p. 12835-12848.
17. Liu, H., et al., Morphological evolution of high-voltage spinel LiNi0. 5Mn1. 5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS applied materials & interfaces, 2016. 8(7): p. 4661-4675.
18. Liu, G., L. Wen, and Y. Liu, Spinel LiNi0. 5Mn1. 5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. Journal of Solid State Electrochemistry, 2010. 14(12): p. 2191-2202.
19. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews, 2014. 114(23): p. 11503-11618.
20. Dedryvere, R., et al., Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1. 6Ni0. 4O4/Li4Ti5O12 lithium-ion battery. The Journal of Physical Chemistry C, 2010. 114(24): p. 10999-11008.
21. Browning, J.F., et al., In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode LiMn1. 5Ni0. 5O4. ACS applied materials & interfaces, 2014. 6(21): p. 18569-18576.
22. Pieczonka, N.P., et al., Understanding transition-metal dissolution behavior in LiNi0. 5Mn1. 5O4 high-voltage spinel for lithium ion batteries. The Journal of Physical Chemistry C, 2013. 117(31): p. 15947-15957.
23. Jarry, A.l., et al., The Formation Mechanism of Fluorescent Metal Complexes at the Li x Ni0. 5Mn1. 5O4? δ/Carbonate Ester Electrolyte Interface. Journal of the American Chemical Society, 2015. 137(10): p. 3533-3539.
24. Garcia, B. and M. Armand, Aluminium corrosion in room temperature molten salt. Journal of power sources, 2004. 132(1): p. 206-208.
25. Kuhnel, R.-S. and A. Balducci, Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors. Journal of Power Sources, 2014. 249: p. 163-171.
26. Zhou, Q., et al., Physical and electrochemical properties of N-alkyl-N-methylpyrrolidinium bis (fluorosulfonyl) imide ionic liquids: PY13FSI and PY14FSI. The Journal of Physical Chemistry B, 2008. 112(43): p. 13577-13580.
27. Peng, C., et al., Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes. Electrochimica Acta, 2008. 53(14): p. 4764-4772.
28. Morita, M., et al., Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochimica Acta, 2002. 47(17): p. 2787-2793.
29. Wang, J., et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature communications, 2016. 7.
30. MacFarlane, D.R., et al., Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials, 2016. 1: p. 15005.
31. Balducci, A., et al., Ionic liquids as electrolyte in lithium batteries: In situ FTIRS studies on the use of electrolyte additives. ECS Transactions, 2008. 11(29): p. 109-114.
32. Ishikawa, M., et al., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of power sources, 2006. 162(1): p. 658-662.
33. Lewandowski, A. and A. ?widerska-Mocek, Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. Journal of Power Sources, 2009. 194(2): p. 601-609.
34. Balducci, A., et al., Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). Journal of power sources, 2011. 196(22): p. 9719-9730.
35. Lux, S.F., et al., Li?ion anodes in air?stable and hydrophobic ionic liquid?based electrolyte for safer and greener batteries. International Journal of Energy Research, 2010. 34(2): p. 97-106.
36. Balducci, A., Ionic Liquids in Lithium-Ion Batteries. Topics in Current Chemistry, 2017. 375(2): p. 20.
37. MacFarlane, D.R., et al., Energy applications of ionic liquids. Energy & Environmental Science, 2014. 7(1): p. 232-250.
38. Shin, J.-H., W.A. Henderson, and S. Passerini, Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochemistry Communications, 2003. 5(12): p. 1016-1020.
39. Howlett, P.C., D.R. MacFarlane, and A.F. Hollenkamp, High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochemical and Solid-State Letters, 2004. 7(5): p. A97-A101.
40. Matsumoto, H., et al., Fast cycling of Li/LiCoO 2 cell with low-viscosity ionic liquids based on bis (fluorosulfonyl) imide [FSI]?. Journal of Power Sources, 2006. 160(2): p. 1308-1313.
41. Appetecchi, G.B., et al., Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. Electrochemical characterization of the electrolytes. Journal of Power Sources, 2009. 192(2): p. 599-605.
42. Kalhoff, J., et al., Safer Electrolytes for Lithium?Ion Batteries: State of the Art and Perspectives. ChemSusChem, 2015. 8(13): p. 2154-2175.
43. Kim, G.-T., et al., Development of ionic liquid-based lithium battery prototypes. Journal of Power Sources, 2012. 199: p. 239-246.
44. Bockenfeld, N., et al., On the use of lithium iron phosphate in combination with protic ionic liquid-based electrolytes. Journal of The Electrochemical Society, 2013. 160(4): p. A559-A563.
45. Menne, S., et al., Protic ionic liquids as electrolytes for lithium-ion batteries. Electrochemistry Communications, 2013. 31: p. 39-41.
46. Vogl, T., et al., The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications. Journal of Materials Chemistry A, 2014. 2(22): p. 8258-8265.
47. Vogl, T., et al., The influence of cation structure on the chemical–physical properties of protic ionic liquids. The Journal of Physical Chemistry C, 2016. 120(16): p. 8525-8533.
48. Menne, S., T. Vogl, and A. Balducci, The synthesis and electrochemical characterization of bis (fluorosulfonyl) imide-based protic ionic liquids. Chemical Communications, 2015. 51(17): p. 3656-3659.
49. Markevich, E., V. Baranchugov, and D. Aurbach, On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5V Li ion batteries. Electrochemistry communications, 2006. 8(8): p. 1331-1334.
50. Borgel, V., et al., On the application of ionic liquids for rechargeable Li batteries: High voltage systems. Journal of Power Sources, 2009. 189(1): p. 331-336.
51. Mun, J., et al., Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochemical and Solid-State Letters, 2010. 13(8): p. A109-A111.
52. Mun, J., et al., Surface film formation on LiNi0. 5Mn1. 5O4 electrode in an ionic liquid solvent at elevated temperature. Journal of The Electrochemical Society, 2011. 158(5): p. A453-A457.
53. Gao, X.-W., et al., LiNi 0.5 Mn 1.5 O 4 spinel cathode using room temperature ionic liquid as electrolyte. Electrochimica Acta, 2013. 101: p. 151-157.
54. Wongittharom, N., et al., Ionic liquid electrolytes for high-voltage rechargeable Li/LiNi 0.5 Mn 1.5 O 4 cells. Journal of Materials Chemistry A, 2014. 2(10): p. 3613-3620.
55. Cao, X., et al., High voltage LiNi0. 5Mn1. 5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes. 2016.
56. Salem, N., et al., Physical and Electrochemical Properties of Some Phosphonium-Based Ionic Liquids and the Performance of Their Electrolytes in Lithium-Ion Batteries. Journal of The Electrochemical Society, 2017. 164(8): p. H5202-H5209.
57. Hu, Y., et al., Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochemistry communications, 2004. 6(1): p. 28-32.
58. Zheng, H., et al., Temperature effects on the electrochemical behavior of spinel LiMn2O4 in quaternary ammonium-based ionic liquid electrolyte. The Journal of Physical Chemistry B, 2005. 109(28): p. 13676-13684.
59. Tsunashima, K., F. Yonekawa, and M. Sugiya, Lithium secondary batteries using a lithium nickelate-based cathode and phosphonium ionic liquid electrolytes. Electrochemical and Solid-State Letters, 2009. 12(3): p. A54-A57.
60. Nadherna, M., et al., Electrochemical behavior of Li2FeSiO4 with ionic liquids at elevated temperature. Journal of the Electrochemical Society, 2009. 156(7): p. A619-A626.
61. Seki, S., et al., Imidazolium-Based Room-Temperature Ionic Liquid for Lithium Secondary Batteries: Relationships between Lithium Salt Concentration and Battery Performance Characteristics. ECS Electrochemistry Letters, 2012. 1(6): p. A77-A79.
62. Sato, T., et al., Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. Journal of Power Sources, 2004. 138(1-2): p. 253-261.
63. Guerfi, A., et al., Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. Journal of Power Sources, 2010. 195(3): p. 845-852.
64. Kim, H.-T., et al., Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries. Acs Sustainable Chemistry & Engineering, 2015. 4(2): p. 497-505.
65. Kuhnel, R.-S., et al., Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochimica Acta, 2011. 56(11): p. 4092-4099.
66. Menne, S., R.-S. Kuhnel, and A. Balducci, The influence of the electrochemical and thermal stability of mixtures of ionic liquid and organic carbonate on the performance of high power lithium-ion batteries. Electrochimica Acta, 2013. 90: p. 641-648.
67. Wang, Z., et al., Vinyl-functionalized imidazolium ionic liquids as new electrolyte additives for high-voltage Li-ion batteries. Journal of Solid State Electrochemistry, 2013. 17(11): p. 2839-2848.
68. Salem, N. and Y. Abu-Lebdeh, Non-flammable electrolyte mixtures of ringed ammonium-based ionic liquids and ethylene carbonate for high voltage li-ion batteries. Journal of The Electrochemical Society, 2014. 161(10): p. A1593-A1601.
69. Agostini, M., et al., A high-power and fast charging Li-ion battery with outstanding cycle-life. Scientific Reports, 2017. 7(1): p. 1104.
70. Abu-Lebdeh, Y., et al., Ionic liquid and plastic crystalline phases of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries. Journal of power sources, 2006. 154(1): p. 255-261.
71. Watarai, A., et al., A rechargeable lithium metal battery operating at intermediate temperatures using molten alkali bis (trifluoromethylsulfonyl) amide mixture as an electrolyte. Journal of power sources, 2008. 183(2): p. 724-729.
72. Yan, C., et al., 1-Alkyl-2, 3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquids as highly safe electrolyte for Li/LiFePO 4 battery. Electrochimica Acta, 2010. 55(16): p. 4728-4733.
73. Kim, J.-K., et al., An imidazolium based ionic liquid electrolyte for lithium batteries. Journal of Power Sources, 2010. 195(22): p. 7639-7643.
74. Fang, S., et al., New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. Journal of Power Sources, 2011. 196(13): p. 5637-5644.
75. Jin, Y., et al., Properties and application of ether-functionalized trialkylimidazolium ionic liquid electrolytes for lithium battery. Journal of Power Sources, 2013. 226: p. 210-218.
76. Srour, H., H. Rouault, and C.C. Santini, Study on Cycling Performance and Electrochemical Stability of 1-Hexyl-3-methylimidazolium Bis (trifluoromethanesulfonyl) imide Assembled with Li4Ti5O12 and LiFePO4 at 333 K. Journal of The Electrochemical Society, 2013. 160(6): p. A781-A785.
77. Bucher, N., et al., A novel ionic liquid for Li ion batteries–uniting the advantages of guanidinium and piperidinium cations. RSC Advances, 2014. 4(4): p. 1996-2003.
78. Jin, Y., et al., Functionalized ionic liquids based on quaternary ammonium cations with two ether groups as new electrolytes for Li/LiFePO4 secondary battery. Journal of Power Sources, 2014. 254: p. 137-147.
79. Swiderska-Mocek, A., Electrolyte based on 1-ethyl-3-vinylimidazolium bis (trifluoromethanesulphonyl) imide for Li-ion batteries. Electrochimica Acta, 2014. 132: p. 504-511.
80. Vogl, T., S. Passerini, and A. Balducci, The impact of mixtures of protic ionic liquids on the operative temperature range of use of battery systems. Electrochemistry Communications, 2017. 78: p. 47-50.
81. Garcia, B., et al., Room temperature molten salts as lithium battery electrolyte. Electrochimica Acta, 2004. 49(26): p. 4583-4588.
82. Seki, S., et al., Reversibility of lithium secondary batteries using a room-temperature ionic liquid mixture and lithium metal. Electrochemical and Solid-State Letters, 2005. 8(11): p. A577-A578.
83. Zheng, H., et al., Temperature dependence of the electrochemical behavior of LiCoO2 in quaternary ammonium-based ionic liquid electrolyte. Solid State Ionics, 2005. 176(29-30): p. 2219-2226.
84. Sakaebe, H., H. Matsumoto, and K. Tatsumi, Discharge–charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation–Effect of the structure. Journal of power sources, 2005. 146(1-2): p. 693-697.
85. Seki, S., et al., Imidazolium-Based Room-Temperature Ionic Liquid for Lithium Secondary Batteries Effects of Lithium Salt Concentration. Journal of The Electrochemical Society, 2007. 154(3): p. A173-A177.
86. Seki, S., et al., Effects of alkyl chain in imidazolium-type room-temperature ionic liquids as lithium secondary battery electrolytes. Electrochemical and Solid-State Letters, 2007. 10(10): p. A237-A240.
87. Sakaebe, H., H. Matsumoto, and K. Tatsumi, Application of room temperature ionic liquids to Li batteries. Electrochimica Acta, 2007. 53(3): p. 1048-1054.
88. Seki, S., et al., Quaternary ammonium room-temperature ionic liquid/lithium salt binary electrolytes: electrochemical study. Journal of the Electrochemical Society, 2008. 155(6): p. A421-A427.
89. Fang, S., et al., Guanidinium-based ionic liquids as new electrolytes for lithium battery. Journal of Power Sources, 2009. 191(2): p. 619-622.
90. Mun, J., et al., Comparative study on surface films from ionic liquids containing saturated and unsaturated substituent for LiCoO2. Journal of the Electrochemical Society, 2010. 157(2): p. A136-A141.
91. Seki, S., et al., Electrolyte properties of 1-alkyl-2, 3, 5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries. Journal of Power Sources, 2010. 195(18): p. 6207-6211.
92. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chemistry of materials, 2009. 22(3): p. 587-603.
指導教授 李岱洲 張仍奎(Tai-chou Lee Jeng-Kuei Chang) 審核日期 2018-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明