博碩士論文 104324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:54.158.194.80
姓名 張晉瑋(Chin-Wei Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 大面積規則準直排列單晶矽奈米洞、奈米管陣列結構之製備及其特性研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 一維矽基奈米結構由於高深寬比而擁有優異的性質,已有各式製程手法相繼被提出。近年來,一種成本低廉、製程簡單結合聚苯乙烯奈米球微影術與金屬催化化學蝕刻法在不同矽晶圓上製備大面積規則準直排列的矽晶奈米線與奈米柱陣列已經引起注意。然而,目前針對奈米管的製備相對於奈米線結構而言較為複雜且困難。由多篇文獻中指出,內外雙層且中空的奈米管結構能夠表現出比奈米線更加優異的性質。因此,本研究提出一種經氧氣電漿修飾的聚苯乙烯奈米球微影術搭配純金催化化學蝕刻的新穎製備技術,可在室溫下於(001)Si基材上製備出大面積規則準直排列的單晶矽奈米洞與奈米管陣列結構。
  實驗結果顯示,本實驗製備出的單晶矽奈米管陣列其晶面取向與原始所使用的(001)Si基材相同,且藉由調整使用的奈米球粒徑大小與純金蝕刻參數可以分別調控奈米管的間距與內徑。另外,從掃描式電子顯微鏡影像觀察發現,奈米管的長度隨著純金催化化學蝕刻時間呈線性增加,表示其生成為反應控制機制。而由水滴接觸角與紫外光、可見光光譜儀量測結果顯示出,奈米管相較於奈米線結構擁有更加優異的表面疏水性質與光學抗反射性質。綜合以上結果得知,本研究所提出的新穎製備手法相信將能夠進一步運用在各式單晶矽基材上,成功地製備出不同尺度之矽基奈米管陣列結構。
摘要(英)
One-dimensional (1D) silicon-based nanostructures have excellent properties due to their high aspect ratio. There are several synthetic techniques have been proposed. Recently, a low cost method, which is based on the polystyrene nanosphere lithography and metal-assisted catalytic etching process has attracted much attention. By using this technique, large area, well-ordered and vertically-aligned Si nanowires and Si nanorods can be readily produced on different types of Si wafers. However, compared with the fabrication processes of Si nanowires, the fabrication of Si nanotubes are relatively complex and difficult. Many recent studies have demonstrated that 1D nanostructures with hollow interiors have better properties than their solid counterparts. Therefore, in this study, we proposed a new and facile route for fabricating large area, well-order arrays of Si nanoholes and vertically-aligned single-crystalline silicon nanotubes on (001)Si substrates at room temperature by using the O2-plasma modified nanosphere lithography in conjunction with the Au-assisted chemical etching processes.
The experimental results reveal that all the produced Si nanotubes are single-crystalline and their axial orientation is the same as that of the (001)Si substrate. The sapcing and interior diameter of the Si nanotubes can be tuned by adjusting the diameter of nanospheres and the Au etching conditions. It is also found from SEM observations that the length of the Si nanotubes increase linearly with the Au-catalyzed etching time, indicating that the formation process is reaction controlled. The results of water contact angle and UV-vis spectroscopic measurements clearly show that, compared with Si nanowires, the produced Si nanotubes exhibit higher hydrophobicity and better antireflection properties. The obtained results present the exciting prospects that the new approach proposed here provides the capability to fabricate other Si-based nanotube arrays on various Si substrates.
關鍵字(中) ★ 單晶矽奈米管
★ 單晶矽奈米洞
★ 奈米球微影術
★ 金屬催化化學蝕刻法
關鍵字(英)
論文目次
摘要 I
Abstract II
致謝 III
第一章 前言及文獻回顧 1
1-1前言 1
1-2 一維矽基奈米結構陣列 2
1-2-1 矽晶奈米線陣列 2
1-2-2 矽晶奈米洞陣列 4
1-2-3 矽晶奈米管陣列 6
1-3 奈米球微影術 9
1-3-1 奈米球自組裝 10
1-3-2 液面自組裝轉附技術 10
1-4 金屬催化化學蝕刻 11
1-5 圓盤狀金奈米結構陣列之製備 12
1-6 研究動機與目標 13
第二章 實驗步驟、儀器與分析 15
2-1 大面積規則準直排列之單晶矽奈米線陣列 15
2-1-1 矽晶基材使用前處理 15
2-1-2大面積規則排列之聚苯乙烯奈米球模板 15
2-1-3反應式氧氣電漿蝕刻調控奈米球模板尺寸 16
2-1-4 純金薄膜蒸鍍 16
2-1-5 聚苯乙烯奈米球模板之舉離 16
2-1-6 金屬催化化學蝕刻 17
2-1-7 純金薄膜移除 17
2-2 大面積規則排列之圓盤狀金奈米結構陣列 17
2-2-1 聚苯乙烯奈米球加熱 18
2-2-2異向性蝕刻純金薄膜 18
2-3 大面積規則準直排列之單晶矽奈米洞結構陣列 18
2-4 大面積規則準直排列之單晶矽奈米管結構陣列 19
2-5 使用儀器與特性分析 19
2-5-1 電子槍蒸鍍系統 19
2-5-2 反應式離子蝕刻機 19
2-5-3 掃描式電子顯微鏡 19
2-5-4 原子力顯微鏡 20
2-5-5 穿透式電子顯微鏡 20
2-5-6 影像式水滴接觸角量測儀 21
2-5-7 紫外光-可見光光譜儀 21
第三章 結果與討論 22
3-1奈米球模板之製備 22
3-1-1 大面積規則排列之單層聚苯乙烯奈米球模板 22
3-1-2 經氧氣電漿調控粒徑之奈米球模板 23
3-1-3 奈米球模板之加熱 24
3-2 大面積規則準直排列之單晶矽奈米線陣列 25
3-3 大面積規則排列之圓盤狀金奈米結構陣列 26
3-4 大面積規則準直排列之單晶矽奈米洞陣列 28
3-5 大面積規則準直排列之單晶矽奈米管陣列 29
3-6 水滴接觸角性質分析 32
3-6-1 單晶矽奈米線陣列 32
3-6-2 單晶矽奈米洞陣列 33
3-6-3 單晶矽奈米線/管陣列 33
3-7 抗反射性質分析 34
3-7-1 單晶矽奈米線陣列 34
3-7-2 單晶矽奈米洞陣列 34
3-7-3 單晶矽奈米線/管陣列 35
第四章 結論與未來展望 36
4-1結論 36
4-2 未來展望 37
參考文獻 38
表目錄 48
圖目錄 50
參考文獻
[1] R. P. Feynman, “There′s plenty of room at the bottom.” Engineering and science, 23.5 (1960) 22-36.
[2] R. Kubo, “Electronic Properties of Metallic Fine Particles. I.” Journal of the Physical Society of Japan, 17 (1962) 975-986.
[3] S. Ciraci, and I. P. Batra, “Theory of the quantum size effect in simple metals.” Physical Review B, 33.6 (1986) 4294.
[4] R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink, and C. de M. Donega, “Size Effects on Semiconductor Nanoparticles.” In Nanoparticles: Springer Berlin Heidelberg, (2014) 13-51.
[5] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen, “Fabrication of periodic nickel silicide nanodot arrays using nanosphere lithography.” Thin solid films, 494.1 (2006) 307-310.
[6] X. Huang, D. Ratchford, P. E. Pehrsson, and J. Yeom, “Fabrication of metallic nanodisc hexagonal arrays using nanosphere lithography and two-step lift-off.” Nanotechnology, 27.39 (2016) 395302.
[7] B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing.” The Journal of Physical Chemistry B, 109.22 (2005) 11100-11109.
[8] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-area well-ordered nanodot array pattern fabricated with self-assembled nanosphere template.” IEEE Sensors Journal, 8.6 (2008) 880-884.
[9] W. W. Wu, J. H. He, S. L. Cheng, S. W. Lee, and L. J. Chen, “Self-assembled NiSi quantum-dot arrays on epitaxial Si0.7Ge0.3 on (001) Si.” Applied physics letters, 83.9 (2003) 1836-1838.
[10] X. Liu, B. Choi, N. Gozubenli, and P. Jiang, “Periodic arrays of metal nanorings and nanocrescents fabricated by a scalable colloidal templating approach.” Journal of colloid and interface science, 409 (2013) 52-58.
[11] Ghosh, Tanmay, B. Satpati, and D. Senapati, “Characterization of bimetallic core–shell nanorings synthesized via ascorbic acid-controlled galvanic displacement followed by epitaxial growth.” Journal of Materials Chemistry C, 2.13 (2014) 2439-2447.
[12] J. H. He, W. W. Wu, Y. L. Chueh, C. L. Hsin, L. J. Chen, and L. J. Chou, “Formation and evolution of self-assembled crystalline Si nanorings on (001) Si mediated by Au nanodots.” Applied Physics Letters, 87.22 (2005) 223102.
[13] Z. A. Lewicka, A. Bahloul, W. W. Yu, and V. L. Colvin, “A facile fabrication process for polystyrene nanoring arrays.” Nanoscale 5.22 (2013) 11071-11078.
[14] J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgstrom1, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit.” Science 339.6123 (2013) 1057-1060.
[15] C. T. Black, “Self-aligned self assembly of multi-nanowire silicon field effect transistors.” Applied Physics Letters, 87.16 (2005) 163116.
[16] W. C. Tian, Y. H. Ho, C. H. Chen, and C. Y. Kuo, “Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography.” Sensors 13.1 (2013) 865-874.
[17] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires.” Applied Physics Letters, 75.12 (1999) 1700-1702.
[18] N. Verplanck, E. Galopin, J. C. Camart, and V. Thomy, “Reversible electrowetting on superhydrophobic silicon nanowires.” Nano letters, 7.3 (2007) 813-817.
[19] S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone–polymer solar cells.” Nano letters, 12.6 (2012) 2971-2976.
[20] F. Teng, N. Li, D. Xu, D. Xiao, X. Yang, and N. Lu, “Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching.” Nanoscale, 9.1 (2017) 449-453.
[21] S. E. Han, and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics.” Nano letters 10.3 (2010) 1012-1015.
[22] M. Ge, X. Fang, J. Rong, and C. Zhou, “Review of porous silicon preparation and its application for lithium-ion battery anodes.” Nanotechnology, 24.42 (2013) 422001.
[23] V. Vicky, N. A. Chaniotakis, “DNA Stabilization and Hybridization Detection on Porous Silicon Surface by EIS and Total Reflection FT?IR Spectroscopy.” Electroanalysis, 20.17 (2008) 1845-1850.
[24] I. Sumio, “Helical microtubules of graphitic carbon.” Nature, 354.6348 (1991) 56.
[25] F. D. Nayeri, M. Kolahdouz, E. Asl-Soleimani, and S. Mohajerzadeh, “Low temperature carving of ZnO nanorods into nanotubes for dye-sensitized solar cell application.” Journal of Alloys and Compounds, 633 (2015) 359-365.
[26] N. Du, H. Zhang, B. Chen, X. Ma, Z. Liu, J. Wu, and D. Yang, “Porous Indium Oxide Nanotubes: Layer?by?Layer Assembly on Carbon?Nanotube Templates and Application for Room?Temperature NH3 Gas Sensors.” Advanced Materials, 19.12 (2007) 1641-1645.
[27] Z. Li, H. Wanga, P. Liu, B. Zhao, and Y. Zhang, “Synthesis and field-emission of aligned SnO2 nanotubes arrays.” Applied Surface Science, 255.8 (2009) 4470-4473.
[28] Q. Wang, K. Yu, and F. Xu, “Synthesis and field emission of two kinds of hierarchical SnO2 nanostructures.” Solid state communications, 143.4 (2007) 260-263.
[29] Y. H. Yang, K. M. Ahn, S. M. Kang, S. H. Moon, and B. T. Ahn1, “Fabrication of a high-performance poly-Si thin-film transistor using a poly-Si film prepared by silicide-enhanced rapid thermal annealing process.” Electronic Materials Letters, 10.6 (2014) 1081-1085.
[30] G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes.” IEEE Photonics Journal, 5.2 (2013) 2201011-2201011.
[31] H. F. Hsu, C. A. Chen, S. W. Liu, and C. K. Tang, “Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires.” Nanoscale research letters, 12.1 (2017) 182.
[32] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima and J. Rand, “Silicon nanowire solar cells.” Applied Physics Letters, 91.23 (2007) 233117.
[33] S. Misra, L. Yu, M. Foldyna, P. R. Cabarrocas, “High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires.” Solar Energy Materials and Solar Cells, 118 (2013) 90-95.
[34] A. D. Mohite, D. E. Perea, S. Singh, S. A. Dayeh, I. H. Campbell, S. T. Picraux, and H. Htoon, “Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p–n junctions.” Nano letters, 12.4 (2012) 1965-1971.
[35] L. Yu, P. R. Cabarrocas, “Morphology control and growth dynamics of in-plane solid–liquid–solid silicon nanowires.” Physica E: Low-dimensional Systems and Nanostructures, 44.6 (2012) 1045-1049.
[36] Y. Li, P. Liang, X. Yang, H. Cai,Q. You, J. Sun, N. Xu, J. Wu, “Fabrication and short-wavelength light emission of Si nanowires grown via quasi solid–liquid–solid mechanism.” Materials Letters, 134 (2014) 5-8.
[37] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gosele, “Synthesis of Vertical High?Density Epitaxial Si (100) Nanowire Arrays on a Si (100) Substrate Using an Anodic Aluminum Oxide Template.” Advanced Materials, 19.7 (2007) 917-920.
[38] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner, and A. Waag, “Production of vertical nanowire resonators by cryogenic-ICP–DRIE.” Microsystem technologies, 20.4-5 (2014) 759-767.
[39] Z. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density.” Advanced materials, 19.5 (2007) 744-748.
[40] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gosele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching.” Nano letters, 8.9 (2008) 3046-3051.
[41] W. Chern, K. Hsu, I. S. Chun, B. P. de Azeredo, N. Ahmed, K. H. Kim, J. Zuo, N. Fang, P. Ferreira, and X. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays.” Nano letters, 10.5 (2010) 1582-1588.
[42] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, “Metal?assisted chemical etching of silicon: a review.” Advanced materials, 23.2 (2011) 285-308.
[43] K. Q. Peng, Y. J. Yan, S. P.Gao, and J. Zhu, “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry.” Advanced Materials, 14.16 (2002) 1164.
[44] Y. Awad, E. Lavallee, K. M. Lau, J. Beauvais, D. Drouin, M. Cloutier, D. Turcotte, P. Yang, and P. Kelkar, “Arrays of holes fabricated by electron-beam lithography combined with image reversal process using nickel pulse reversal plating.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22.3 (2004) 1040-1043.
[45] Z. P. Li, Z. M. Xu, X. P. Qu, S. B. Wang, J. Peng, and L. H. Mei, “Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks.” Nanotechnology, 28.9 (2017) 095301.
[46] D. Di, X. Wu, P. Dong, C. Wang, J. Chen, H. Wang, J. Wang, and S. Li, “Simple, fast, and cost-effective fabrication of wafer-scale nanohole arrays on silicon for antireflection.” Journal of Nanomaterials, 2014 (2014) 8.
[47] F. Wang, H. Y. Yu, X. Wang, J. Li, X. Sun, M. Yang, S. M. Wong, and H. Zheng, “Maskless fabrication of large scale Si nanohole array via laser annealed metal nanoparticles catalytic etching for photovoltaic application.” Journal of Applied Physics, 108.2 (2010) 024301.
[48] K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-performance silicon nanohole solar cells.” Journal of the American Chemical Society, 132.20 (2010) 6872-6873.
[49] D. Brodoceanu, R. Elnathan, B. P. Simo?n, B. Delalat, T. Guinan, E. Kroner, N. H. Voelcker, and T. Kraus, “Dense arrays of uniform submicron pores in silicon and their applications.” ACS applied materials & interfaces, 7.2 (2015) 1160-1169.
[50] J. Jia, H. Zhanga, Y. Qiua, L. Wang, Y. Wang, L. Hua, “Fabrication and photoelectrochemical properties of ordered Si nanohole arrays.” Applied Surface Science, 292 (2014) 86-92.
[51] Z. Zhang, L. Liu, T. Shimizu, S. Senz, and U. Gosele, “Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template.” Nanotechnology 21.5 (2009) 055603.
[52] J. Mallet, F. Martineau, K. Namur, and M. Molinari, “Electrodeposition of silicon nanotubes at room temperature using ionic liquid.” Physical Chemistry Chemical Physics, 15.39 (2013) 16446-16449.
[53] A. Convertino, M. Cuscuna, and F. Martelli, “Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers.” Nanotechnology 23.30 (2012) 305602.
[54] J. Hu, Y. Bando, Z. Liu, J. Zhan, D. Golberg, and T. Sekiguchi, “Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates.” Angewandte Chemie International Edition, 43.1 (2004) 63-66.
[55] N. J. Quitoriano, M. Belov, S. Evoy, and T. I. Kamins, “Single-crystal, Si nanotubes, and their mechanical resonant properties.” Nano letters, 9.4 (2009) 1511-1516.
[56] R. Epur, P. J. Hanumantha, M. K. Datta, D. Hong, B. Gattuc, and P. N. Kumta, “A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity.” Journal of Materials Chemistry A, 3.20 (2015) 11117-11129.
[57] Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching.” Nanotechnology, 27.36 (2016) 365302.
[58] Y. He, X. Che, and L. Que, “A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars.” Journal of Microelectromechanical Systems, 25.4 (2016) 662-667.
[59] S. Soleimani-Amiri, A. Gholizadeh, S. Rajabali, Z. Sanaee, and S. Mohajerzadeh, “Formation of Si nanorods and hollow nano-structures using high precision plasma-treated nanosphere lithography.” RSC Advances, 4.25 (2014) 12701-12709.
[60] H. Jeong, J. Lee, C. Bok, S. H. Lee, and S. Yoo, ”Fabrication of Vertical Silicon Nanotube Array Using Spacer Patterning Technique and Metal-Assisted Chemical Etching.” IEEE Transactions on Nanotechnology, 16.1 (2017) 130-134.
[61] Y. Y. Kim, H. J. Kim, J. H. Jeong, J. Lee, J. H. Choi, J. Y. Jung, J. H. Lee, H. Cheng, K. W. Lee, and D. G. Choi, “Facile Fabrication of Silicon Nanotube Arrays and Their Application in Lithium?Ion Batteries.” Advanced Engineering Materials, 18.8 (2016) 1349-1353.
[62] P. Chen, Y. Fan, and Z. Zhong, “The Fabrication and Application of Patterned Si (001) Substrates with Ordered Pits Via Nanosphere Lithography,” Nanotechnology 20 (2009) 095303.
[63] G. M. Whitesides, and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
[64] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals (MIPO): Synthesis of Hexagonal Mesoporous Silica Opals,” Adv. Mater. 12 (2000) 1940-1944.
[65] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-Packed Hemispherical Microlens Array from Two-Dimensional Ordered Polymeric Microspheres,” Langmuir 22 (2006) 7358-7363.
[66] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-Tunable Defects in Colloidal Photonic Crystals,” Adv. Mater. 17 (2005) 2455-2458.
[67] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles,” Encyclopedia of Nanosci. and Nanotech. (2003) 1-23.
[68] K. Nagayama, “Two-Dimensional Self-Assembly of Colloids in Thin Liquid Films,” Colloids Surf. A 109 (1996) 363-374.
[69] P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir 10 (1994) 23-36.
[70] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, and K. Nagayama, “Capillary Meniscus Interactions Between Colloidal Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 151 (1992) 79-94.
[71] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, and K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 155 (1993) 420-437.
[72] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
[73] F. Jarai-Szabo, S. Astilean, and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns,” Chem. Phys. Lett. 408 (2005) 241-246.
[74] Y. Li, W. Cai, G. Duan, F. Sun, B. Cao, and F. Lu, “2D Nanoparticle Arrays by Partial Dissolution of Ordered Pore Films,” Mater. Lett. 59 (2005) 276-279.
[75] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated With Self-Assembled Nanosphere Template,” IEEE Sensors Journal 8 (2008) 880-884.
[76] V. Ng, Y. V. Lee, B. T. Chen, and A. O. Adeyeye, “Nanostructure Array Fabrication with Temperature-Controlled Self-Assembly Techniques,” Nanotechnology 13 (2002) 554-558.
[77] P. Jiang and M. J. McFarland, “Large-scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-coating,” J. Am. Chem. Soc. 126 (2004) 13778-13786.
[78] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique,” Langmuir 20 (2004) 10677-10683.
[79] S. L. Cheng, Y. H. Lin, S. W. Lee, T. Lee, H. Chen, J. C. Hu, and L. T. Chen, “Fabrication of Size-tunable, Periodic Si Nanohole Arrays by Plasma Modified Nanosphere Lithography and Anisotropic Wet Etching,” Appl. Surf. Sci. 263 (2012) 430-435.
[80] J. Ji, H. Zhang, Y. Qiu, L. Wang, Y. Wang, and L. Hu, “Fabrication and Photoelectrochemical Properties of Ordered Si Nanohole Arrays,” Appl. Surf. Sci. 292 (2014) 86-92.
[81] H. C. Wu, X. B. Xu, M. Y. He, M. Q. Zhang, K. J. Ma, and M. D. Bao, “Fabrication of Size-tunable Antireflective Nanopillar Array using Hybrid Nano-patterning Lithography,” Surf. Coat. Tech. 240 (2014) 413-418.
[82] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: Amaterials General Fabrication Process for Periodic Particle Array Surface,” J. Vac. Sci. Tech. A13 (1995) 1553-1558.
[83] E. Vazsonyi, E. Szilagyib, P. Petrika, Z. E. Horvatha, T. Lohner, M. Frieda, G. Jalsovszky, “Porous silicon formation by stain etching.” Thin Solid Films, 388.1 (2001) 295-302.
[84] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon.” Applied Physics Letters, 77.16 (2000) 2572-2574.
[85] J. Wang, G. Duan, Y. Li, G. Liu, and W. Cai, “Wet etching-assisted colloidal lithography: a general strategy toward nanodisk and nanohole arrays on arbitrary substrates.” ACS applied materials & interfaces, 6.12 (2014) 9207-9213.
[86] Y. H. Chang, W. H. Hsu, S. L. Wu, and Y. C. Ding, ‘The synthesis of a gold nanodisk–molecular layer–gold film vertical structure: a molecular layer as the spacer for SERS hot spot investigations.” Materials Chemistry Frontiers, 1.5 (2017) 922-927.
[87] J. M. McLellan, M. Geissler, and Y. Xia, “Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings.” Journal of the American Chemical Society, 126.35 (2004) 10830-10831.
[88] M. Geissler, H. Wolf, R. Stutz, E. Delamarche, U. W. Grummt, B. Michel, and A. Bietsch, “Fabrication of metal nanowires using microcontact printing.” Langmuir, 19.15 (2003) 6301-6311.
[89] J. Li, J. D. Miller, “Reaction kinetics of gold dissolution in acid thiourea solution using ferric sulfate as oxidant.” Hydrometallurgy, 89.3 (2007) 279-288.
[90] T. Groenewald, “The dissolution of gold in acidic solutions of thiourea.” Hydrometallurgy, 1.3 (1976) 277-290.
[91] C. K. Chen, T. N. Lung, and C. C. Wan, “A study of the leaching of gold and silver by acidothioureation.” Hydrometallurgy, 5.2-3 (1980) 207-212.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明