博碩士論文 104324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.236.231.61
姓名 張謙(Chien Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 短有機酸改質奈米氧化鋯分散
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中我們採取不同的表面改質方法在奈米氧化鋯晶粒表面接上數種短有機酸,然後探討改質後奈米氧化鋯的分散性質。我們將清洗乾淨的奈米氧化鋯表面改質醋酸(HAc)、甲基丙烯酸(MA)、異丁酸(IBA)和丁酸(BA),然後檢查使特定有機酸改質之氧化鋯分散的溶劑種類以及分散後粒子團聚情形。氧化鋯表面單獨以醋酸改質者可以分散在高極性、氫鍵作用力強的溶劑裡。若單獨以MA、IBA和BA改質,其產物需要先除水,再以甲苯(或乙苯) 浸潤粒子表面,經過烘除甲苯即可分散在低極性的溶劑裡。若以MA、IBA、BA對已經醋酸改質的氧化鋯做酸根置換,其產物表面有醋酸的影響,便可分散在較高極性的溶劑當中。對於酸根置換的樣品,我們以NMR、TGA等分析,可以判斷兩種改質劑在奈米氧化鋯上分別接枝量,由而了解對醋酸根置換能力為BA>IBA>MA。上述改質氧化鋯樣品在各種溶劑中分散能力可以用Hansen 溶解度參數(HSP)來歸納,亦可以DLVO理論來探討立體障礙、電荷斥力以及凡德瓦爾力對分散的影響。
表面有MA、IBA、BA改質的奈米粒子是以二次粒子的型態分散在有機溶劑中。若在改質的過程中增加除水的步驟,可以使二次粒子縮小。所以二次粒子成因可能與系統中水分有關。我們又發現?啶具有特別的溶劑特性,而可使上述改質氧化鋯以幾乎沒有團聚的一次粒子型態分散。
摘要(英) Different methods have been employed to modify the surface of zirconia nanoparticles (NPs) with various short carboxylic acids, and have led to different colloidal properties. The colloidal behavior of zirconia nanoparticles with a single capping ligand can be characterized by the range of dispersible solvents. Acetate-capped zirconia NPs can be dispersed in highly polar solvents. In the case of methacrylic acid(MA), isobutyric acid(IBA), butyric acid(BA) capped zirconia NPs cannot disperse in any solvents readily. However, after soaking with toluene and further drying, they became dispersible in non-polar solvents. The acetic ligands on acetate-capped zirconia NPs can be exchanged with MA, IBA or BA and become dispersible in more polar solvents. TGA and NMR analysis of ligand exchange samples can tell us the quantity of ligands on zirconia surface, also the ligand exchange ability of ligands. Strangely, most surface modified NPs showed smaller size in pyridine compare to other solvents. Hansen solubility parameters and DLVO theory can be used to describe the dispersion behavior of these surface modified nanoparticles.
關鍵字(中) ★ 氧化鋯
★ 膠體
★ 分散
★ 奈米粒子
關鍵字(英)
論文目次 第一章 1
1.1背景與研究動機 1
2.1無機膠體粒子分散 2
2.1.1電荷斥力(electrostatic effect) 2
2.1.2立體障礙(steric effect) 3
2.1.3膠體粒子接枝配位基的選用 4
2.2膠體粒子分散理論 5
2.2.1 HSP(Hansen Solubility Parameter) 5
2.2.2 DLVO理論 6
2.3研究之目的 8
第三章、實驗 10
3.1實驗藥品 10
3.2實驗步驟 12
3.2.1氧化鋯奈米結晶合成 12
3.2.2醋酸包覆奈米氧化鋯 13
3.2.3以MA、IBA、BA直接改質氧化鋯表面 13
3.2.4以其他有機酸間接改質醋酸包覆的氧化鋯 14
3.3改質後粒子性質測試 14
3.3.1分散溶劑測試 14
3.3.2溶劑中粒徑大小測試 14
3.3.3溶劑中zeta電位量測 14
3.3.4核磁共振分析儀(Nuclear Magnetic Resonance,NMR) 15
3.3.5熱重分析(Thermal Gravimetric Analysis, TGA) 15
第四章、結果與討論 16
4.1直接有機酸改質之氧化鋯 16
4.1.1醋酸改質氧化鋯(AZ) 16
4.1.2 MA、BA及IBA改質氧化鋯 17
4.1.3改質之有機酸與分散溶劑的關係 19
4.1.4 分散粒子之大小分布 22
4.1.5溶劑相容性(HSPiP分析) 27
4.1.6 DLVO理論之電荷斥力與立體障礙分析 27
4.2以有機酸間接改質氧化鋯 30
4.2.1表面酸根鑑定 31
4.2.2 以羧酸酸根置換醋酸與分散溶劑的關係 36
4.2.3分散粒子於溶劑中粒徑大小分布 39
4.2.4直接或間接羧酸改質後溶劑之相容性(HSPiP)差異 46
第五章 總結與未來展望 48
參考文獻 1. Jain, P.K., et al., Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics, 2007. 2(3): p. 107-118.
2. Robel, I., et al., Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. Journal of the American Chemical Society, 2006. 128(7): p. 2385-2393.
3. Kongkanand, A., et al., Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe? TiO2 Architecture. Journal of the American Chemical Society, 2008. 130(12): p. 4007-4015.
4. Ankireddy, K., et al., Highly Conductive Short Chain Carboxylic Acid Encapsulated Silver Nanoparticle Based Inks for Direct Write Technology Applications. Journal of Material Chemistry C, 2013. 1(3): p. 572-579.
5. Enomoto, K., et al., Unique Hydrophobization and Hybridization via Direct Phase Transfer of ZrO2 Nanoparticles from Water to Toluene Producing Highly Transparent Polystyrene and Poly(methyl methacrylate) Hybrid Bulk Materials. Macromolecules, 2017. 50(24): p. 9713-9725.
6. Li, L., et al., Solubility Studies of Inorganic-organic Hybrid Nanoparticle Photoresists with different Surface Functional Groups. Nanoscale, 2016. 8(3): p. 1338-43.
7. Loredana, S. and J.P. Davim, eds. Surface Engineering Techniques and Applications: Research Advancements. 2014, IGI Global: Hershey, PA, USA. 1-347.
8. Arita, T., et al., Dispersion of Fatty Acid Surface Modified Ceria Nanocrystals in Various Organic Solvents. Industrial & Engineering Chemistry Research, 2009. 49(4): p. 1947-1952.
9. Chen, C.W., X.S. Yang, and A.S.T. Chiang, An Aqueous Process for the Production of Fully Dispersible t-ZrO2 Nanocrystals. Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(3): p. 296-301.
10. Iijima, M., et al., Anionic Surfactant with Hydrophobic and Hydrophilic Chains for Nanoparticle Dispersion and Shape Memory Polymer Nanocomposites. Journal of the American Chemical Society, 2009. 131(45): p. 16342-16343.
11. Pujari, S.P., et al., Tribology and Stability of Organic Monolayers on CrN: a Comparison among Silane, Phosphonate, Alkene, and Alkyne Chemistries. Langmuir, 2013. 29(33): p. 10405-10415.
12. Zeininger, L., et al., Quantitative Determination and Comparison of the Surface Binding of Phosphonic Acid, Carboxylic Acid, and Catechol Ligands on TiO2 Nanoparticles. Chemistry, 2016. 22(38): p. 13506-12.
13. Hansen, C.M., The Three Dimensional Solubility Parameter. J. Paint Technol, 1967. 39: p. 105.
14. Fritz, G., et al., Electrosteric Stabilization of Colloidal Dispersions. Langmuir, 2002. 18(16): p. 6381-6390.
15. Israelachvili, J.N., Intermolecular and Surface Forces. Third ed. 2011, California: Elsevier.
16. Verwey, E.J.W. and J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids. 1948, New York: Elsevier.
17. Vincent, B., et al., Depletion Flocculation in Dispersions of Sterically-stabilised Particles (“soft spheres”). Colloids and Surfaces, 1986. 18(2–4): p. 261-281.
18. 王藪勳, 奈米結晶氧化鋯合成與分散, in 化學工程與材料工程學系. 2014, 國立中央大學.
19. Hens, Z. and J.C. Martins, A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals. Chemistry of Materials, 2013. 25(8): p. 1211-1221.
20. Wang, S.-H., et al., Hansen Solubility Parameter Analysis on the Dispersion of Zirconia Nanocrystals. Journal of Colloid and Interface Science, 2013. 407: p. 140-147.
21. Zimmerman, P.A., et al., Non-aggregating Nanoparticles and the Use Thereof. 2012, Google Patents.
指導教授 蔣孝澈(Shiaw-Tseh Chiang) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明