博碩士論文 104324016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.138.33.178
姓名 鐘元亨(Yuan-Heng Zhong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析★ 電遷移對純錫導線晶粒旋轉之研究
★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究★ 鋁鍺薄膜封裝研究
★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長
★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究
★ 無鉛銲料與碲化鉍基材之界面反應研究★ 高摻雜之二氧化錫薄膜能隙窄化現象及氧化銦薄膜之應力量測與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在電子構裝中,以銲料為主的覆晶接合方式已經沿用數十年,然而銲料與金屬層或金屬基板在加熱時會反應生成介金屬化合物,產生許多可靠度的問題,因此,許多研究開始朝向直接銅-銅接合的方法以消除這些問題。銅具有良好的導電性以及成本低等優點,但其表面易氧化及汙染的問題仍是直接銅-銅接合所要面臨的一大挑戰。由於表面的氧化以及汙染物會使構裝溫度增加,因此許多研究為了降低構裝溫度,於製程上的環境方面以及表面處理的要求相對嚴格,製造成本也因儀器的使用而增加,因此在本實驗中以微米級的銅顆粒作為介質,並在其中加入微量的錫粉(SAC305),藉著其低熔點特性與銅反應來補強顆粒連接性的不足,以達到銅-銅接合的目的,其製程簡單,製造成本相對較低,對環境要求也比較不嚴苛。
將銅箔表面經研磨處理後,作為接合基板,以化學還原的方式,保護微米銅顆粒表面不被氧化,並添加錫銀銅合金(SAC305)及其他物質作為之溶劑的調整,配製成銅墨,並塗佈於銅箔上,觀察並改善接合狀況,並在不同的溫度、時間以及錫(SAC305)含量的條件下作比較,並在氮氣的條件下完成低溫接合。
摘要(英) Solder bump bonding has been the mainstream in packaging technology for many years. Cu to Cu bonding has been reported in recent years because of its excellent conductivity and low costs. However, great challenges exist for Cu to Cu bonding process due to surface oxidation when fabricated at high bonding temperature. In this study, micron-size Cu particles added with trace amount of SAC305 particles are used to fabricate strong Cu bumps. SAC 305 quickly dissolves in Cu matrix and fills the gaps between the Cu particles by interfacial reaction. Pastes are formed by micron-size Cu and SAC 305 particles dissolving in a solvent to prevent from oxidation by chemical reaction. The pastes are coated on Cu foils to form Cu bumps and aged at various temperatures and times. The Cu coated foils are bonded face-to-face and a continuous void-free Cu bumps at a temperature below 150 oC in a nitrogen environment without external pressure.
關鍵字(中) ★ 銅-銅接合
★ 燒結
關鍵字(英)
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 序論 1
1-1 前言 1
1-2 微電子構裝 2
1-2-1 構裝之定義與目的 2
1-2-2 電子構裝層級區分 3
1-3 3D IC 構裝技術 6
1-4 無鉛銲料可靠度問題之文獻回顧 7
1-4-1 銲料過冷度對構裝之影響 7
1-4-2 介金屬化合物之相生成對可靠度之影響 9
1-4-3 三維積體電路構裝之可靠度問題 10
1-5 銅-銅接合之文獻回顧 14
1-5-1 表面活化接合(Surface Activated Bonding, SAB) 14
1-5-2 熱壓接合 16
a、銅表面改質接合 17
1. Ar-FAB + CMP 17
2. 銅表面親水接合 19
3. 金屬鹽反應接合 21
4. 銅自擴散接合 22
1-5-3鈍化層保護接合 25
a、自組裝單分子層保護接合(Self-Assembled Monolayer, SAM) 26
1、有無SAM之比較 28
2、不同SAM處理之比較 29
b、金屬鈍化層接合 32
1、金鈍化層 32
2、鈦鈍化層 35
3、鈀鈍化層 37
1-5-4 銅燒結接合 38
a、奈米級銅墨接合 39
b、微米級銅墨接合 41
1-6 研究動機 43
第二章 實驗方法 44
2-1 材料製備 44
2-1-1 銅箔準備 44
2-2 銅-錫混合墨製備 44
2-3 銅燒結接合 46
2-4 試片分析 46
2-4-1 掃描式電子顯微鏡(SEM) 46
2-4-2 X-ray繞射儀(XRD) 47
2-4-3 能量散步光譜儀(EDS) 47
第三章 結果與討論 48
3-1 不同溶劑之銅錫混合墨薄膜燒結接合 48
3-1-1 0.5M抗壞血酸溶液之銅錫混合墨 48
3-1-2 微量明膠溶液之銅錫混合墨 52
3-1-3 明膠-甲酸溶液之銅錫混合墨 54
3-2 不同參數對明膠-甲酸溶液之銅錫混合墨燒結的影響 56
3-2-1 溫度對燒結接合之影響 56
3-2-2 不同粒徑混合粉比較 59
3-2-3 錫含量改變對燒結接合之影響 60
3-3 膠體溶液之影響 63
3-3-1 明膠膠體粒子 63
3-3-2 水溶劑之影響 63
第四章 結論 65
參考資料 67
參考文獻
[1] 許明哲, 先進微電子 3D-IC 構裝. 五南, 2011.
[2] H. K. Kim, H. K. Liou, and K. N. Tu, ”Morphology of instability of the wetting tips of eutectic SnBi, eutectic SnPb, and pure Sn on Cu,” Journal of Materials Research, vol. 10, no. 3, pp. 497-504, 2011.
[3] P. T. Vianco and D. R. Frear, ”Issues in the replacement of lead-bearing solders,” Journal of the Minerals, Metals and Materials Society, vol. 45, no. 7, pp. 14-19, 1993.
[4] K. Zeng and K. N. Tu, ”Six cases of reliability study of Pb-free solder joints in electronic packaging technology,” Materials Science and Engineering: R: Reports, vol. 38, no. 2, pp. 55-105, 2002.
[5] Y. C. Huang, S. W. Chen, and K. S. Wu, ”Size and substrate effects upon undercooling of Pb-free solders,” Journal of Electronic Materials, vol. 39, no. 1, pp. 109-114, 2010.
[6] J. K. Yu, Y. H. Wang, G. Z. Xing, Q. Qiao, B. Liu, Z, J, Chu, C. L. Li, and F. You, ”Characteristics of bulk liquid undercooling and crystallization behaviors of jet electrodeposition Ni–W–P alloy,” Bulletin of Materials Science, vol. 38, no. 1, pp. 157-161, 2015.
[7] Y. Y. Chiang, R. Cheng, and A. T. Wu, ”Effects on undercooling and interfacial reactions with Cu substrates of adding Bi and In to Sn-3Ag Solder,” Journal of Electronic Materials, vol. 39, no. 11, pp. 2397-2402, 2010.
[8] H. H. Hsu, Y. T. Huang, S. Y. Huang, T. C. Chang, and A. T. Wu, ”Evolution of the intermetallic compounds in Ni/Sn-2.5Ag/Ni microbumps for three-dimensional integrated circuits,” Journal of Electronic Materials, vol. 44, no. 10, pp. 3888-3895, 2015.
[9] H. H. Hsu, S. Y. Huang, T. C. Chang, and A. T. Wu, ”Nucleation and propagation of voids in microbumps for 3 dimensional integrated circuits,” (in English), Applied Physics Letters, Article vol. 99, no. 25, p. 3, 2011.
[10] K. N. Tu, ”Reliability challenges in 3D IC packaging technology,” Microelectronics Reliability, vol. 51, no. 3, pp. 517-523, 2011.
[11] C. Chen, H. M. Tong, and K. N. Tu, ”Electromigration and thermomigration in Pb-free flip-chip solder joints,” in Annual Review of Materials Research, vol. 40, pp. 531-555, 2010.
[12] T. Nakazawa and A. Samara, ”Three-dimensional inline inspection for substrate warpage and ball grid array coplanarity using stereo vision,” Applied Optics, vol. 53, no. 14, pp. 3101-3109, 2014.
[13] S. Farrens, S. Sood, and S. MicroTec, ”Wafer level packaging: Balancing device requirements and materials properties,” in Proc. Pan Pacific Microelectron. Symp, pp. 22-24, 2014.
[14] A. Shigetou, T. Itoh, M. Matsuo, N. Hayasaka, K. Oktumura, and T. Suga, ”Room temperature bonding of ultra-fine pitch and low-profiled Cu electrodes for bump-less interconnect,” in Electronic Components and Technology Conference. Proceedings. 53rd, pp. 848-852, 2003.
[15] H. Takagi, K. Kikuchi, R. Maeda, T. Chung, and T. Suga, ”Surface activated bonding of silicon wafers at room temperature,” Applied physics letters, vol. 68, no. 16, pp. 2222-2224, 1996.
[16] T. Kim, M. Howlader, T. Itoh, and T. Suga, ”Room temperature Cu–Cu direct bonding using surface activated bonding method,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, no. 2, pp. 449-453, 2003.
[17] J. Fan, C. S. Tan, and Y. Pardhi, Low temperature wafer-level metal thermo-compression bonding technology for 3D integration. InTech Open Access Publisher, 2012.
[18] V. Dragoi, G. Mittendorfer, J. Burggraf, and M. Wimplinger, ”Metal thermocompression wafer bonding for 3D integration and MEMS applications,” ECS Transactions, vol. 33, no. 4, pp. 27-35, 2010.
[19] A. Shigetou and T. Suga, ”Modified diffusion bonding of chemical mechanical polishing Cu at 150 C at ambient pressure,” Applied physics express, vol. 2, no. 5, p. 056501, 2009.
[20] P. Gueguen, L. D. Cioccio, P. Gergaud, M. Rivoire, D. Scevola, M. Zussy, A. M. Charvet, L. Bally, D. Lafond, L. Clavelier, ”Copper direct-bonding characterization and its interests for 3D integration,” Journal of The Electrochemical Society, vol. 156, no. 10, pp. H772-H776, 2009.
[21] S. Koyama, N. Hagiwara, and I. Shohji, ”Cu/Cu direct bonding by metal salt generation bonding technique with organic acid and persistence of reformed layer,” Japanese Journal of Applied Physics, vol. 54, no. 3, p. 030216, 2015.
[22] K. Chen, A. Fan, C. Tan, and R. Reif, ”Bonding parameters of blanket copper wafer bonding,” Journal of electronic materials, vol. 35, no. 2, pp. 230-234, 2006.
[23] E. J. Jang, J. W. Kim, B. Kim, T. Matthias, and Y. B. Park, ”Annealing temperature effect on the Cu-Cu bonding energy for 3D-IC integration,” Metals and Materials International, vol. 17, no. 1, pp. 105-109, 2011.
[24] P. M. Agrawal, B. M. Rice, and D. L. Thompson, ”Predicting trends in rate parameters for self-diffusion on FCC metal surfaces,” Surface Science, vol. 515, no. 1, pp. 21-35, 2002.
[25] C. M. Liu, H. W. Lin, Y. S. Huang, Y. C. Chu, C. Chen, D. R. Lyu, K. N. Chen, K. N. Tu, ”Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu,” Scientific reports, vol. 5, p. 9734, 2015.
[26] C. M. Liu, H. W. Lin, Y. S. Huang, Y. C. Chu, C. Chen, D. R. Lyu, K. N. Chen, K. N. Tu,., ”Low-temperature direct copper-to-copper bonding enabled by creep on highly (111)-oriented Cu surfaces,” Scripta Materialia, vol. 78, pp. 65-68, 2014.
[27] A. Ulman, ”Formation and structure of self-assembled monolayers,” Chemical reviews, vol. 96, no. 4, pp. 1533-1554, 1996.
[28] C. S. Tan, D. F. Lim, X. F. Ang, J. Wei, and K. Leong, ”Low temperature Cu Cu thermo-compression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement,” Microelectronics Reliability, vol. 52, no. 2, pp. 321-324, 2012.
[29] D. Lim, S. Goulet, M. Bergkvist, J. Wei, K. Leong, and C. Tan, ”Enhancing Cu-Cu diffusion bonding at low temperature via application of self-assembled monolayer passivation,” Journal of the Electrochemical Society, vol. 158, no. 10, pp. H1057-H1061, 2011.
[30] D. Lim, J. Wei, K. Leong, and C. Tan, ”Surface passivation of Cu for low temperature 3D wafer bonding,” ECS Solid State Letters, vol. 1, no. 1, pp. P11-P14, 2012.
[31] A. K. Panigrahi, S. Bonam, T. Ghosh, S. G. Singh, and S. R. K. Vanjari, ”Ultra-thin Ti passivation mediated breakthrough in high quality Cu-Cu bonding at low temperature and pressure,” Materials Letters, vol. 169, pp. 269-272, 2016.
[32] Y. P. Huang, Y. S. Chien, R. N. Tzeng, and K. N. Chen, ”Demonstration and electrical performance of Cu–Cu bonding at 150°C with Pd passivation,” Transactions on Electron Devices, vol. 62, no. 8, pp. 2587-2592, 2015.
[33] R. M. German, P. Suri, and S. J. Park, ”Review: liquid phase sintering,” Journal of Materials Science, vol. 44, no. 1, pp. 1-39, 2009.
[34] J. J. Li, C. L. Cheng, T. L. Shi, J. H. Fan, X. Yu, S. Y. Cheng, G. L. Liao, Z. R. Tang, ”Surface effect induced Cu-Cu bonding by Cu nanosolder paste,” Materials Letters, vol. 184, pp. 193-196, 2016.
[35] X. Liu and H. Nishikawa, ”Improved joint strength with sintering bonding using microscale Cu particles by an oxidation-reduction process,” in Electronic Components and Technology Conference (ECTC), 66th, pp. 455-460, 2016.
[36] X. Liu and H. Nishikawa, ”Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging,” Scripta Materialia, vol. 120, pp. 80-84, 2016.
[37] G. Allen, R. Bayles, W. Gile, and W. Jesser, ”Small particle melting of pure metals,” Thin solid films, vol. 144, no. 2, pp. 297-308, 1986.
[38] G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, Y. N. Zhou, ”Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application,” Open Surface Science Journal, vol. 3, pp. 70-75, 2011.
[39] C. J. Wu, Y. J. Sheng, and H. K. Tsao, ”Copper conductive lines on flexible substrates fabricated at room temperature,” Journal of Materials Chemistry C, vol. 4, no. 15, pp. 3274-3280, 2016.
[40] K. E. Aasmundtveit, T. T. Luu, T. A. Tollefsen, K. Wang, H. V. Nguyen, and N. Hoivik, ”Solid-liquid interdiffusion (SLID) bonding,” in Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), pp. 1-5, 2016.
[41] J. Li, P. Agyakwa, and C. Johnson, ”Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process,” Acta Materialia, vol. 59, no. 3, pp. 1198-1211, 2011.
[42] C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, ”Characterization of gelatin nanofiber prepared from gelatin–formic acid solution,” Polymer, vol. 46, no. 14, pp. 5094-5102, 2005.
[43] Y. Y. Dai, M. Z. Ng, P. Anantha, Y. D. Lin, Z. G. Li, C. L. Gan, C. S. Tan, ”Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects,” Applied Physics Letters, vol. 108, no. 26, p. 263103, 2016.
[44] H. Y. Sohn and C. Moreland, ”The effect of particle size distribution on packing density,” The Canadian Journal of Chemical Engineering, vol. 46, no. 3, pp. 162-167, 1968.
[45] 梁崇正, ”明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化, National Central University, 2002.
[46] 張嘉芬, ”抗氧化奈米銅粒子的製備及分析, National Central University, 2013.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2017-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明