博碩士論文 104324019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:54.234.190.237
姓名 黃昱勳(Yu-Hsun Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 尖針狀鎳矽化物奈米線及高長寬比矽晶奈米錐有序陣列之製備與性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們報導了準直、尖針狀、單晶NiSi2奈米線有序陣列在(001)Si基材上之製備及性質。首先,在室溫下藉由結合氧氣電漿修飾奈米球微影術、金催化蝕刻跟多重無電鍍銀催化蝕刻,在(001)Si基材上製備出週期性尖針狀矽晶奈米線陣列。接著,利用傾角薄膜蒸鍍與熱處理製備尖針狀矽化物奈米線。由於尖針狀NiSi2奈米線的有序排列、鋒利尖端、單晶結構及低有效功函數,具有極低啟動電場的優異電子場發射特性。實驗結果呈現出令人興奮的前景,這裡所提出的新方法將提供在製備高效尖針狀矽化物基電子場發射源有序陣列的能力。
在這裡,我們還提出ㄧ種簡單的方法在(001)Si基材上製備準直且具高長寬比之矽晶奈米錐陣列,其僅需ㄧ步驟的金屬催化化學蝕刻製程。通過調整蝕刻時間和雙氧水、氫氟酸及酒精的濃度可以容易地控制矽晶奈米錐的形貌和高度。獲得的高長寬比矽晶奈米錐陣列具有超疏水特性,其水滴接觸角高於150°。觀察到的去濕行為可以用Cassie-Baxter model來解釋。具有矽晶奈米錐結構的矽晶基材在可見光/近紅外光波長區域中也表現出很強的抗反射性能。抗反射性能的增強可歸因於錐形矽晶奈米錐結構所產生的光捕捉效應和漸變折射率。高長寬比矽晶奈米錐優異的寬帶抗反射特性使其成為高效矽基太陽能電池或光偵測器的理想選擇。
摘要(英)
In this study, we reported the fabrication and characterization of well-ordered arrays of vertical needle-like, single-crystalline NiSi2 nanowires on (001)Si substrates. Firstly, periodic needle-like Si nanowire arrays were fabricated on (001)Si substrates by the oxygen plasma modified nanosphere lithography in conjunction with the Au-assisted catalytic etching process and multiple electroless Ag-assisted catalytic etching process at room temperature. Subsequently, the needle-like silicide nanowires were fabricated by oblique-angle thin-film deposition and heat treatment processes. The vertical needle-like NiSi2 nanowires, owing to their well-ordered arrangement, sharp tips, single-crystalline structure, and low effective work function, exhibit excellent field-emission properties with a very low turn-on field. The obtained results present the exciting prospect that the new approach proposed here will provide the capability to fabricate well-ordered arrays of high-efficiency needle-like in silicide-based field emitters.
Here, we also propose a facile method to fabricate vertically-aligned, high-aspect-ratio Si nanocone arrays on (001)Si substrates, which is based solely on a one-step metal-assisted chemical etching process. The morphology and height of Si nanocones can be readily controlled by adjusting the etching time and the concentrations of H2O2, HF, and C2H5OH. The obtained heigh-aspect-ratio Si nanocone arrays have superhydrophobic characteristics with water contact angle higher then 150°. The observed dewetting behavior can be explained by the Cassie-Baxter model. The Si substrates with Si nanocone structures also exhibit strong antireflection properties in the visible/near-IR wavelength regions. The enhanced antireflection properties can be attributed to the light trapping effect and the graded reflective indices resulting from the tapered Si nanocone structures. The excellent broadband antireflection characteristics of high-aspect-ratio Si nanocones make them ideal for applications in high efficiency Si-based solar cells or photodetectors.
關鍵字(中) ★ 鎳矽化物奈米線
★ 矽晶奈米錐
★ 電子場發射
★ 可見光/近紅外光光譜
★ 水滴接觸角
關鍵字(英)
論文目次
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 奈米球微影術結合金屬催化蝕刻法製備矽單晶奈米線 2
1-3 錐狀矽單晶奈米線 3
1-4 場發射電子元件 4
1-4-1 電子場發射相關理論 4
1-4-2 鎳矽化物奈米線應用於電子場發射之研究 5
1-5 紅外線感測元件 7
1-6 水滴接觸角之相關理論 8
1-7 研究動機及目標 9
第二章 實驗步驟及儀器設備 11
2-1 實驗步驟 11
2-1-1 矽晶基材使用前處理 11
2-1-2 奈米球陣列模板製備 11
2-1-3 金屬催化蝕刻製備矽單晶奈米線陣列 12
2-1-4 無電鍍金屬催化蝕刻修飾矽單晶奈米線 12
2-1-5 尖針狀鎳金屬矽化物奈米線陣列製備 12
2-1-6 錐狀矽晶奈米柱陣列製備 13
2-2 試片分析 13
2-2-1 掃描式電子顯微鏡 13
2-2-2 穿透式電子顯微鏡 14
2-2-3 真空電子場發射性質量測系統 14
2-2-4 影像式水滴接觸角量測儀 15
2-2-5 可見光-近紅外光光譜儀 15
第三章 結果與討論 16
3-1 奈米球微影術結合金屬催化蝕刻製備矽單晶奈米線陣列 16
3-2 無電鍍金屬催化蝕刻製備尖針狀矽單晶奈米線 17
3-3 尖針狀鎳金屬矽化物奈米線製備 18
3-4 電子場發射性質量測及探討 21
3-5 金屬催化蝕刻製備矽晶奈米錐陣列 22
3-6 可見光-近紅外光光譜量測分析 26
第四章 結論與未來展望 30
參考文獻 32
圖目錄 40
參考文獻

[1] G. E. Moore, ”Cramming more components onto integrated circuits,” Electronics Magazine (1965) 4.
[2] T. Søndergaard and S. I. Bozhevolnyi ”Metal nano-strip optical resonators,” Optics Express 15 (2007) 4198.
[3] K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, ”Fabrication and photovoltaic property of ordered macroporous silicon,” Applied Physics Letters 95 (2009) 143119.
[4] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, ”Stacked silicon nanowires with improved field enhancement factor,” ACS Applied Materials & Interfaces 2 (2010) 331.
[5] S. L. Wu, J. L. Deng, T. Zhang, R. T. Zheng, and G. A. Cheng, ”Tunable synthesis of carbon nanosheet/silicon nanowire hybrids for field emission applications,” Diamond & Related Materials 26 (2012) 83.
[6] S. M. Jeong, E. C. Garnett, S.Wang, Z. F. Yu, S. H. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, ”Hybrid silicon nanocone−polymer solar cells,” Nano Letters 12 (2012) 2971.
[7] J. Y. Jung, H. D. Um, S. W. Jee, K. T. Park, J. H. Bang, and J. H. Lee, ”Optimal design for antireflective Si nanowire solar cells,” Solar Energy Materials & Solar Cells 112 (2013) 84.
[8] D. L. Zhang, G. Cheng, J. Q. Wang, C. Q. Zhang, Z. Liu, Y. H. Zuo, J. Zheng, C. L. Xue, C. B. Li, B. W. Cheng, and Q. M. Wang, ”Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance,” Nanoscale Research Letters 9 (2014) 661.
[9] D. P. Tran, T. J. Macdonald, B. Wolfrum, R. Stockmann, T. Nann, A. Offenha ̈usser, and B. Thierry, ”Photoresponsive properties of ultrathin silicon nanowires,” Applied Physics Letters 105 (2014) 231116.
[10] B. R. Huang, J. F. Hsu, and C. S. Huang, ”The effects on the field emission properties of silicon nanowires by different pre-treatment techniques of Ni catalysts layers,” Diamond & Related Materials 14 (2005) 2105.
[11] A.I. Klimovskaya, O.E. Raichev, A.A. Dadykin, Yu.M. Litvin, P.M. Lytvyn, I.V. Prokopenko, T.I. Kamins, S. Sharma, and Yu. Moklyak, ”Quantized field-electron emission at 300K in self-assembled arrays of silicon nanowires,” Physica E 37 (2007) 212.
[12] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi, and S.Q. Feng, ”Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism,” Chemical Physics Letters 323 (2000) 224.
[13] D.P. Yua, Y.J. Xing, Q.L. Hang, H.F. Yana, J. Xu, Z.H. Xi, and S.Q. Feng, ”Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica E 9 (2001) 305.
[14] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, ”Oxide-assisted growth of semiconduction nanowires,” Advanced Materials 15 (2003) 635.
[15] Y. Yao, F. H. Li, and S. T. Lee, ”Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts,” Chemical Physics Letters 406 (2005) 381.
[16] H. J. Syu, S. C. Shiu, and C. F. Lin, ”Silicon nanowire/organic hybrid solarcell with efficiency of 8.40%,” Solar Energy Materials & Solar Cells 98 (2012) 267
[17] C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. H. Wu, and S. H. Yu, ” Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8 (2014) 4015.
[18] E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan, and H. E. Unalan, ” Silicon nanowire network metal-semiconductor-metal photodetectors,” Applied Physics Letters 103 (2013) 083114.
[19] http://www.doorauto.tw/感應器-二合一感應器-雷達開門紅外線安全防夾/
[20] http://www.stately.com.tw/Product-206.asp
[21] A. Rogalski,” Recent progress in infrared detector technologies,” Infrared Physics & Technology 54 (2011) 136.
[22] A. Rogalski,” History of infrared detectors,” Opto-Electronics Review 20 (2012) 279.
[23] B. Kang, Y. Cai, and L. Wang,” Improvement of external quantum efficiency of silicide Schottky-barrier detectors in the 3 to 5 μm waveband with subwavelength-grating incident plane,” Optical Engineering 55 (2016) 047103.
[24] B. Y. Tsaur, C. K. Chen, and J. P. Mattia, ” PtSi Schottky-barrier focal plane arrays for multispectral imaging in ultraviolet, visible, and infrared spectral bands,” IEEE Electron Device Letters 11 (1990) 162.
[25] S. Roy, K. Midya, S. P. Duttagupta, and D. Ramakrishnan, ”Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation,” Journal of Applied Physis 116 (2014) 124507.
[26] S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, ”Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Applied Physis Letters 92 (2008) 081103.
[27] Z. P. Huang, H. Fang, and J. Zhu, ”Fabrication of silicon nanowire arrays with controlled diameter,” Advanced Materials 19 (2007) 744.
[28] H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, ”Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of fresnel reflection,” Langmuir 26 (2010) 12855.
[29] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Leea, ” Ordered silicon nanowire arrays via nanosphere lithography and metalinduced etching,” Applied Physics Letters 90 (2007) 163123
[30] S.L. Cheng, C. Y. Chen, and S.W. Lee, ”Kinetic investigation of the electrochemical synthesis of vertically-aligned periodic arrays of silicon nanorods on (001)Si substrate,” Thin Solid Films 518 (2010) S190.
[31] F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, ”Fabrication of ordered Si nanopillar arrays for ultralow reflectivity,” RSC Advances 6 (2016) 15803.
[32] Q. Wang, Z. Tian, Y. Li, S. Tian, Y. Li, S. Ren, C. Gu, and J. Li, ”General fabrication of ordered nanocone arrays by one-step selective plasma etching,” Nanotechnology 25 (2014) 115301.
[33] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai, and L. J. Chen, ”High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnology 18 (2007) 505305.
[34] M. K. Dawood1, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, ”Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21 (2010) 205305.
[35] S. Lv, Z. Li, S. Su, L. Lin, Z. Zhanga, and W. Miaoa, ”Tunable field emission properties of well-aligned silicon nanowires with controlled aspect ratio and proximity,” RSC Advances 4 (2014) 31729.
[36] Y. J. Hung, S. L. Lee, K. C. Wu, Y. Tai, and Y. T. Pan, ”Antireflective silicon surface with verticalaligned silicon nanowires realized by simple wet chemical etching processes,” Opttics Express 19 (2011) 15792.
[37] J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, ”A strong antireflective solar cell prepared by tapering silicon nanowires,” Opttics Express 18 (2010) A286.
[38] H. F. Hsu, J. Y. Wang, and Y. H. Wu, ” KOH etching for tuning diameter of Si nanowire arrays and their field emission characteristics,” Journal of The Electrochemical Society 161 (2014) H53.
[39] H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” Journal of Materials Chemistry A 1 (2013) 9942.
[40] R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Royal Society of London A119 (1928) 173.
[41] F. Zhao, G. A. Cheng, R. T. Zheng, D. D. Zhao, S. L. Wu, and J. H. Deng, “Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires,” Nanoscale Research Letters 6 (2011) 1.
[42] H. S. Uh and S. S. Park, “Investigation of various metal silicide field emitters and their application to field emission display,” Journal of The Electrochemical Society 150 (2003) H12.
[43] Y. W. Ok, T. Y. Seong, C. J. Choi, and K. N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Applied Physics Letters 13 (2013)717.
[44] J. D. Kim, E. S. Lee, C. S. Han, Y. J. Kang, D. J. Kim, and W. A. Anderson, “Observation of Ni silicide formations and field emission properties of Ni silicide nanowires,” Microelectronic Engineering 85 (2008) 1709.
[45] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, and L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties,” The Journal of Physical Chemistry C 113 (2009) 2286.
[46] C. J. Kim, K. Kang, Y. S. Woo, K. G. Ryu, H. Moon, J. M. Kim, D. S. Zang, and M. H. Jo, “Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties” Advanced Materials 19 (2007) 3637.
[47] Z. H. Liu, H. Zhang, L. Wang, and D. Yang, “Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil” Nanotechnology 19 (2008) 375602.
[48] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, and L. J. Chen, “Vertically well-aligned epitaxial Ni 31 Si 12 nanowire arrays with excellent field emission properties” Applied Physics Letters 93 (2008) 113109.
[49] C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, and L. J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters,” Nanotechnology 22 (2010) 055603.
[50] S. S. Lv, Z. C. Li, J. C. Liao, Z. J. Zhang, and W. Miao, “Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters” Journal of Vacuum Science & Technology B 24 (2014) 1949.
[51] C. F. Chuang and S. L. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Research 7 (2014) 1592.
[52] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim, and H. H. Cho, “Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion,” International Journal of Heat and Mass Transfer 82 (2015) 267.
[53] Y. T. Wu, C. W. Huang, C. H. Chiu, C. F. Chang, J. Y. Chen, T. Y. Lin, Y. T. Huang, K. C. Lu, P. H. Yeh, and W. W. Wu, “Nickel/platinum dual silicide axial nanowire heterostructures with excellent photosensor applications,” Nano Letters 16 (2016) 1086.
[54] N. Verplanck, Y. Coffinier, V. Thomy, and R. Boukherroub, “Wettability switching techniques on superhydrophobic surfaces,” Nanoscale Res. Lett. 2 (2007) 577.
[55] M. Callies and D. Quere, “On water repellency,” Soft Matter 1 (2005) 55.
[56] B. Bhushan, “Characterization of rose petals and fabrication and characterization of superhydrophobic surfaces with high and low adhesion,” Springer (2016) 213.
[57] D. Connétable and O. Thomas, “First-principles study of nickel-silicides ordered phases,” Journal of Alloys and Compounds 509 (2011) 2639.
[58] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee , “Electron field emission from silicon nanowires,” Applied Physics Letters 75 (1999) 1700.
[59] V. Kumar, S. K. Saxena, V. Kaushik, K. Saxena, A. K. Shuklac, and R. Kumar, “Silicon nanowires prepared by metal induced etching (MIE): good field emitters,” RSC Advances 556 (2014) 146.
[60] C. Le, G. J. Fang, S. Sheng, Z. Q. Chen, J. B. Wang, S. Ma, and X. Z. Zhao, “Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays,” Physica E 30 (2005) 169.
[61] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked silicon nanowires with improved field enhancement factor,” ACS Applied Materials & Interfaces 2 (2010) 331.
[62] H. C. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon rice-straw array emitters and their superior electron field emission,” ACS Applied Materials & Interfaces 2 (2010) 3285.
[63] S. K. Ravipati , C. J. Kuo, J. Shieh, C. T. Chou, and F. H. Ko, “Fabrication and enhanced field emission properties of novel silicon nanostructures,” Microelectronics Reliability 50 (2010) 1973.
[64] W. L. Chiu, C. H. Chiu, J. Y. Chen, C. W. Huang, Y. T. Huang, K. C. Lu, C. L. Hsin, P. H. Yeh, and W. W. Wu, “Single-crystalline δ-Ni2Si nanowires with excellent physical properties,” Nanoscale Research Letters 8 (2013) 290.
[65] J. Y. Lin, H. M. Hsu, and K. C. Lu, “Growth of single-crystalline nickel silicide nanowires with excellent physical properties,” CrystEngComm 17 (2015) 1911.
[66] S. L. Lee, J. H. Yoon, B. W. Koo, D. H. Shin, J. H. Koo, C. J. Lee, Y. W. Kim, H. G. Kim, and T. Y. Lee, “Formation of verticallyaligned cobalt silicide nanowire arrays through a solid-state reaction,” IEEE Transactions on Nanotechnology 12 (2013) 704.
[67] C. M. Lu, H. F. Hsu, and K. C. Lu, “Growth of single-crystalline cobalt silicide nanowires and their field emission property,” Nanoscale Research Letter 8 (2013) 308.
[68] Y. H. Liang, S. Y. Yu, C. L. Hsin, C. W. Huang, and W. W. Wu, “Growth of single-crystalline cobalt silicide nanowires with excellent physical properties,” Journal of Applied Physics 110 (2011) 074302.
[69] H. K. Lin, Y. F. Tzeng, C. H. Wang, N. H. Tai, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Ti5Si3 nanowire and its field emission property,” Chemistry of Materials 20 (2008) 2429.
[70] H. K. Lin, H. A. Cheng, C. Y. Lee, and H. T. Chiu, “Chemical vapor deposition of TiSi nanowires on C54 TiSi2 thin film: An amorphous titanium silicide interlayer assisted nanowire growth,” Chemistry of Materials 21 (2009) 5388.
[71] X, S. Fang, Y. S. Bando , U. K. Gautam , C. H. Ye, and D. Golberg, “Inorganic semiconductor nanostructures and their fieldemission applications,” Journal of Materials Chemistry 18 (2008) 509.
[72] B. P. Azeredo, J. Sadhu, J. Ma, K. Jacobs, J .Kim, K. Lee, J. H. Eraker, X. Li, S .Sinha, N. Fang, P. Ferreira1, and K. Hsu, “Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching,” Nanotechnology 24 (2013) 225305.
[73] F. Teng, N. Li, D. Xu, D. Y. Xiao, X. G. Yang, and N. Lu, “Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching,” Nanoscale 9 (2017) 449.
指導教授 鄭紹良 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明