博碩士論文 104324020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.239.109.55
姓名 許文瑋(Wen-Wei Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
(STRUCTURAL DISRUPTION ON THE PHASE-SEPARATED LIPID MEMBRANES BY MEMBRANE-ACTIVE PEPTIDES)
相關論文
★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討★ 脂質組成成分對細胞膜物理性質與生物功能的影響
★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響
★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性
★ CoCrFeMnNi 高熵合金 形變行為之探討★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 發展量測雙層脂質膜的排列密度之實驗技術
★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響★ 開發預測雙子型界面活性劑之自組裝結構的方法
★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用★ 組成變異對脂質膜之動態行為及其與胜肽間交互作用之影響
★ 澱粉樣胜肽β寡聚體在脂質膜上形成孔道之濃度測量★ 鏈堆積導致的彎曲模量變化對Alamethicin離子通道活性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-8-1以後開放)
摘要(中) 在特定的生物條件下,生物膜表面會因相分離現象的產生而形成不同的結構區域。此結構區塊的產生大大地左右生物膜的物理性質,進而影響具有膜活性的胜肽與生物膜之間的互相作用。最近的研究指出,相分離的現象對具膜活性的胜肽之吸附或插入於生物膜的現象影響甚鉅。然而,此現象背後的作用機制卻依然未知。為了釐清這未知的機制,我們使用表面壓力測量、X射線繞射技術和螢光滲透測定等技術,研究相分離如何調節脂質膜的物理性質以及調控蜂毒肽和澱粉樣蛋白(Aβ)的膜穿孔能力;近期的研究發現,澱粉樣蛋白(Aβ)的膜活性,特別是澱粉樣蛋白(Aβ)的膜穿孔能力,可能與阿茲海默症的發病機制高度相關。我們的研究結果發現,蜂毒肽的膜穿孔能力高度取決於脂質膜的相分離狀態,其中液態無序相的存在為蜂毒肽膜穿孔的必要條件。令我們驚訝的是,無論脂質膜的相態為何,任何聚集狀態下的澱粉樣蛋白(Aβ)都無法於脂質膜上形成孔洞或在其結構上造成明顯的破壞。基於此一觀察,我們探討了脂質膜之物理性質(如:脂質分子排列的緊密度)對於具膜活性胜肽與生物膜之間交互作用的影響,並且討論其生物上的相關性。
摘要(英)
Membrane phase separation is a phenomenon wherein the lipid constituents of a membrane segregate discriminately to form distinct in-plane domains (or phases) upon certain biologically relevant conditions and greatly dictates the physical properties of a membrane, which govern the interactions between biomembranes and the membrane-active peptides. Recent studies have reported how the phase separation could affect the binding and insertion of membrane-active peptides to membranes. Nevertheless, the general mechanisms underlying the correlations remain elusive. To contribute to the exploration of the general mechanisms, we employ the surface pressure measurements, X-ray scattering techniques, and fluorescent leakage assays to investigate how the phase separation and associated phase behavior modulate the physical properties of a lipid membrane and how the modulations in turn affect the membrane perforation capability of two membrane-active peptides, melittin and amyloid beta (Aβ); the membrane-active aspects, particularly the membrane perforation capability, of Aβ have drawn extensive scrutiny very recently, due to their potential involvement in the pathogenesis of Alzheimer’s disease. It is found that while the membrane perforation capability of melittin was highly dependent on the phase condition of a membrane, with the presence of the liquid-disordered phase being essential and the emergence of phase boundaries being positively influential, to our surprise, no pore formation or other structural disruptions on membranes could be ascribed to Aβ of any aggregation state, regardless of the phase condition of a membrane. The physical principles underlying the observations are explored in the context of the molecular packing densities of a membrane, and the biological implications are also discussed
關鍵字(中) ★ 具膜活性胜肽
★ 澱粉肽
★ 蜂毒肽
★ 相分離脂質膜
★ 螢光洩漏
★ 分子單層槽
關鍵字(英) ★ membrane-active peptide
★ amyloid beta
★ melittin
★ phase-separated membrane
★ fluorescence leakage
★ Langmuir trough
論文目次
摘要 I
Abstracts II
致謝 III
Table of Contents VI
List of Figure IX
List of Table XI
List of Equaiton XII
Chapter 1 Introudction 1
1-1. Membrane-active Peptide 1
1-2. Alzheimer’s Disease and Amyloid Beta 4
1-2-1. Alzheimer’s disease 4
1-2-2. Amyloid precursor protein (APP) 6
1-2-3. Amyloid beta peptide 8
1-2-4. The correlation between Aβ and lipid rafts 12
1-3. Cell Membrane and Artificial Lipid Membrane 14
1-3-1. Lipid and cholesterol 14
1-3-2. Cell membrane 17
1-3-3. Artificial membrane 18
1-4. Lipid Raft and Phase Separation 20
1-4-1. Lipid raft 20
1-4-2. Phase separation and phase diagram 23
1-5. Motivation 28
Chapter 2 Materials and Experimental Method 30
2-1. Materials 30
2-1-1. Lipid 30
2-1-2. Peptide 33
2-1-3. Fluorescence dye 36
2-1-4. Non-biomaterials 37
2-2. Sample Preparation 38
2-2-1. Amyloid beta (Aβ) preparation 38
2-2-2. Vesicle preparation 41
2-3. Experimental Method 42
2-3-1. Langmuir trough 42
2-3-2. Fluorescence assay 49
2-3-3. Dynamic light scattering 53
2-3-4. Ultraviolet-visible spectroscopy 54
2-3-5. Circular dichroism 56
Chapter 3 Result 58
3-1. Size of the Vesicles 58
3-2. The Aggregation State of Aβ 59
3-3. Peptide-Induced Content Leakage of Phase-separated Vesicles 62
3-3-1. Melittin 62
3-3-2. Amyloid beta (Aβ) 77
3-4. The Π-A Isotherm 79
3-4-1. Single-component monolayers 79
3-4-2. Multi-component monolayers 82
3-5. The Compressibility Modulus of Phase-separated Membrane 87
3-5-1. The compressibility modulus of DPPC, DOPC, and cholesterol 87
3-5-2. The compressibility modulus of DPPC/DOPC/Chol mixture 89
3-6. Peptide Adsorption in Lipid Monolayer 93
Chapter 4 Discussion 95
4-1. The Correlation between Peptide and Phase-separated Membrane 95
4-2. The Physical Property Affects the Extent of Membrane Disruption 100
4-3. Amyloid Beta Disrupts the Phase-separated Membrane or not 102
4-4. The Mechanism of Disruption in Phase-separated Membrane by Melittin 107
Chapter 5 Conculsion 109
Reference 110
Appendix 117
參考文獻
1. Last, N. B.; Schlamadinger, D. E.; Miranker, A. D., A common landscape for membrane‐active peptides. Protein Science 2013, 22 (7), 870-882.
2. Milletti, F., Cell-penetrating peptides: classes, origin, and current landscape. Drug Discovery Today 2012, 17 (15), 850-860.
3. Tamm, L. K.; Han, X.; Li, Y.; Lai, A. L., Structure and function of membrane fusion peptides. Peptide Science 2002, 66 (4), 249-260.
4. Brogden, K. A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 2005, 3 (3), 238-250.
5. Takahashi, R. H.; Nagao, T.; Gouras, G. K., Plaque formation and the intraneuronal accumulation of β‐amyloid in Alzheimer′s disease. Pathology International 2017.
6. Raghuraman, H.; Chattopadhyay, A., Melittin: a membrane-active peptide with diverse functions. Bioscience Reports 2007, 27 (4-5), 189-223.
7. Ownby, C. L.; Powell, J. R.; Jiang, M.-s.; Fletcher, J. E., Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon 1997, 35 (1), 67-80.
8. Dempsey, C. E., The actions of melittin on membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1990, 1031 (2), 143-161.
9. Su, C.-J.; Wu, S.-S.; Jeng, U.-S.; Lee, M.-T.; Su, A.-C.; Liao, K.-F.; Lin, W.-Y.; Huang, Y.-S.; Chen, C.-Y., Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochimica et Biophysica Acta (BBA)-Biomembranes 2013, 1828 (2), 528-534.
10. Lee, M.-T.; Sun, T.-L.; Hung, W.-C.; Huang, H. W., Process of inducing pores in membranes by melittin. Proceedings of the National Academy of Sciences 2013, 110 (35), 14243-14248.
11. Allende, D.; Simon, S.; McIntosh, T. J., Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophysical Journal 2005, 88 (3), 1828-1837.
12. Benachir, T.; Monette, M.; Grenier, J.; Lafleur, M., Melittin-induced leakage from phosphatidylcholine vesicles is modulated by cholesterol: a property used for membrane targeting. European Biophysics Journal 1997, 25 (3), 201-210.
13. Subbarao, N. K.; MacDonald, R. C., Lipid unsaturation influences melittin-induced leakage of vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1994, 1189 (1), 101-107.
14. Quist, A.; Doudevski, I.; Lin, H.; Azimova, R.; Ng, D.; Frangione, B.; Kagan, B.; Ghiso, J.; Lal, R., Amyloid ion channels: a common structural link for protein-misfolding disease. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (30), 10427-10432.
15. WHO, A., Dementia: A public health priority. Geneva: World Health Organization 2012.
16. Prince, M. J., World Alzheimer Report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer′s Disease International 2015.
17. Association, A. s., 2012 Alzheimer’s disease facts and figures. Alzheimer′s & Dementia 2012, 8 (2), 131-168.
18. A.D.I, https://www.alz.co.uk/. assed by July 4, 2017.
19. Selkoe, D. J., Alzheimer′s disease: genes, proteins, and therapy. Physiological Reviews 2001, 81 (2), 741-766.
20. Zheng, H.; Koo, E. H., Biology and pathophysiology of the amyloid precursor protein. Molecular Neurodegeneration 2011, 6 (1), 27.
21. Roychaudhuri, R.; Yang, M.; Hoshi, M. M.; Teplow, D. B., Amyloid β-protein assembly and Alzheimer disease. Journal of Biological Chemistry 2009, 284 (8), 4749-4753.
22. Walsh, D. M.; Lomakin, A.; Benedek, G. B.; Condron, M. M.; Teplow, D. B., Amyloid β-protein fibrillogenesis detection of a protofibrillar intermediate. Journal of Biological Chemistry 1997, 272 (35), 22364-22372.
23. Wilson, M. R.; Yerbury, J. J.; Poon, S., Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity. Molecular Biosystems 2008, 4 (1), 42-52.
24. Butterfield, S. M.; Lashuel, H. A., Amyloidogenic protein–membrane interactions: mechanistic insight from model systems. Angewandte Chemie International Edition 2010, 49 (33), 5628-5654.
25. Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P. H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y., The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016, 537 (7618), 50-56.
26. Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300 (5618), 486-489.
27. Doody, R. S.; Thomas, R. G.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; Raman, R.; Sun, X.; Aisen, P. S., Phase 3 trials of solanezumab for mild-to-moderate Alzheimer′s disease. New England Journal of Medicine 2014, 370 (4), 311-321.
28. Doody, R. S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R. G., A phase 3 trial of semagacestat for treatment of Alzheimer′s disease. New England Journal of Medicine 2013, 369 (4), 341-350.
29. Salloway, S.; Sperling, R.; Fox, N. C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L. S.; Porsteinsson, A. P.; Ferris, S., Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer′s disease. New England Journal of Medicine 2014, 370 (4), 322-333.
30. Kayed, R.; Sokolov, Y.; Edmonds, B.; McIntire, T. M.; Milton, S. C.; Hall, J. E.; Glabe, C. G., Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. Journal of Biological Chemistry 2004, 279 (45), 46363-46366.
31. Sokolov, Y.; Kozak, J. A.; Kayed, R.; Chanturiya, A.; Glabe, C.; Hall, J. E., Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. The Journal of General Physiology 2006, 128 (6), 637-647.
32. Haataja, L.; Gurlo, T.; Huang, C. J.; Butler, P. C., Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocrine Reviews 2008, 29 (3), 303-316.
33. Simons, M.; Keller, P.; De Strooper, B.; Beyreuther, K.; Dotti, C. G.; Simons, K., Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proceedings of the National Academy of Sciences 1998, 95 (11), 6460-6464.
34. Ehehalt, R.; Keller, P.; Haass, C.; Thiele, C.; Simons, K., Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. The Journal of Cell Biology 2003, 160 (1), 113-123.
35. Hamada, T.; Morita, M.; Kishimoto, Y.; Komatsu, Y.; Vestergaard, M. d.; Takagi, M., Biomimetic microdroplet membrane interface: detection of the lateral localization of amyloid beta peptides. The Journal of Physical Chemistry Letters 2009, 1 (1), 170-173.
36. Morita, M.; Hamada, T.; Tendo, Y.; Hata, T.; Mun′delanji, C. V.; Takagi, M., Selective localization of Alzheimer′s amyloid beta in membrane lateral compartments. Soft Matter 2012, 8 (10), 2816-2819.
37. Choucair, A.; Chakrapani, M.; Chakravarthy, B.; Katsaras, J.; Johnston, L., Preferential accumulation of Aβ (1− 42) on gel phase domains of lipid bilayers: An AFM and fluorescence study. Biochimica et Biophysica Acta (BBA)-Biomembranes 2007, 1768 (1), 146-154.
38. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of lipid bilayers and vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1977, 470 (2), 185-201.
39. Fong, C.; Le, T.; Drummond, C. J., Lyotropic liquid crystal engineering–ordered nanostructured small molecule amphiphile self-assembly materials by design. Chemical Society Reviews 2012, 41 (3), 1297-1322.
40. Ivankin, A.; Kuzmenko, I.; Gidalevitz, D., Cholesterol-phospholipid interactions: new insights from surface x-ray scattering data. Physical Review Letters 2010, 104 (10), 108101.
41. Veatch, S. L.; Keller, S. L., Organization in lipid membranes containing cholesterol. Physical Review Letters 2002, 89 (26), 268101.
42. Daly, T. A.; Wang, M.; Regen, S. L., The origin of cholesterol’s condensing effect. Langmuir 2011, 27 (6), 2159-2161.
43. Krause, M. R.; Regen, S. L., The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts. Accounts of Chemical Research 2014, 47 (12), 3512-3521.
44. Singer, S.; Nicolson, G. L., The fluid mosaic model of the structure of cell membranes. Membranes and Viruses in Immunopathology; Day, SB, Good, RA, Eds 1972, 7-47.
45. (a) Allen, T. M.; Cullis, P. R., Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews 2013, 65 (1), 36-48; (b) Pattni, B. S.; Chupin, V. V.; Torchilin, V. P., New developments in liposomal drug delivery. Chemical Reviews 2015, 115 (19), 10938-10966.
46. Miyoshi, T.; Kato, S., Detailed analysis of the surface area and elasticity in the saturated 1, 2-diacylphosphatidylcholine/cholesterol binary monolayer system. Langmuir 2015, 31 (33), 9086-9096.
47. Kundu, A.; Yamaguchi, S.; Tahara, T., Evaluation of pH at charged lipid/water interfaces by heterodyne-detected electronic sum frequency generation. The Journal of Physical Chemistry Letters 2014, 5 (4), 762-766.
48. Ngyugen, H.; McNamee, C. E., Determination and comparison of how the chain number and chain length of a lipid affects its interactions with a phospholipid at an air/water interface. The Journal of Physical Chemistry B 2014, 118 (22), 5901-5912.
49. Hädicke, A.; Blume, A., Binding of the Cationic Peptide (KL) 4K to Lipid Monolayers at the Air–Water Interface: Effect of Lipid Headgroup Charge, Acyl Chain Length, and Acyl Chain Saturation. The Journal of Physical Chemistry B 2016, 120 (16), 3880-3887.
50. Relini, A.; Marano, N.; Gliozzi, A., Probing the interplay between amyloidogenic proteins and membranes using lipid monolayers and bilayers. Advances in Colloid and Interface Science 2014, 207, 81-92.
51. Lingwood, D.; Simons, K., Lipid rafts as a membrane-organizing principle. Science 2010, 327 (5961), 46-50.
52. Simons, K.; Ikonen, E., Functional rafts in cell membranes. Nature 1997, 387 (6633), 569.
53. Simons, K.; Toomre, D., Lipid rafts and signal transduction. Nature reviews Molecular Cell Biology 2000, 1 (1), 31-39.
54. Brown, D. A.; Rose, J. K., Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992, 68 (3), 533-544.
55. Yu, J.; Fischman, D. A.; Steck, T. L., Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. Journal of Supramolecular Structure 1973, 1 (3), 233-248.
56. Harder, T.; Scheiffele, P.; Verkade, P.; Simons, K., Lipid domain structure of the plasma membrane revealed by patching of membrane components. The Journal of Cell Biology 1998, 141 (4), 929-942.
57. Varma, R.; Mayor, S., GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 1998, 394 (6695), 798-801.
58. Friedrichson, T.; Kurzchalia, T. V., Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 1998, 394 (6695), 802-805.
59. Pralle, A.; Keller, P.; Florin, E.-L.; Simons, K.; Hörber, J. H., Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. The Journal of Cell Biology 2000, 148 (5), 997-1008.
60. Veatch, S. L.; Keller, S. L., Seeing spots: complex phase behavior in simple membranes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2005, 1746 (3), 172-185.
61. Ladbrooke, B.; Chapman, D., Thermal analysis of lipids, proteins and biological membranes a review and summary of some recent studies. Chemistry and Physics of Lipids 1969, 3 (4), 304-356.
62. Keller, S. L., Coexisting liquid phases in lipid monolayers and bilayers. Journal of Physics: Condensed Matter 2002, 14 (19), 4763.
63. Sanchez, S. A.; Tricerri, M. A.; Gratton, E., Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proceedings of the National Academy of Sciences 2012, 109 (19), 7314-7319.
64. Nickels, J. D.; Cheng, X.; Mostofian, B.; Stanley, C.; Lindner, B.; Heberle, F. A.; Perticaroli, S.; Feygenson, M.; Egami, T.; Standaert, R. F., Mechanical properties of nanoscopic lipid domains. Journal of the American Chemical Society 2015, 137 (50), 15772-15780.
65. Heberle, F. A.; Petruzielo, R. S.; Pan, J.; Drazba, P.; Kučerka, N.; Standaert, R. F.; Feigenson, G. W.; Katsaras, J., Bilayer thickness mismatch controls domain size in model membranes. Journal of the American Chemical Society 2013, 135 (18), 6853-6859.
66. García-Sáez, A. J.; Chiantia, S.; Schwille, P., Effect of line tension on the lateral organization of lipid membranes. Journal of Biological Chemistry 2007, 282 (46), 33537-33544.
67. Veatch, S. L.; Keller, S. L., Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophysical Journal 2003, 85 (5), 3074-3083.
68. Chen, D.; Santore, M. M., Large effect of membrane tension on the fluid–solid phase transitions of two-component phosphatidylcholine vesicles. Proceedings of the National Academy of Sciences 2014, 111 (1), 179-184.
69. Veatch, S.; Polozov, I.; Gawrisch, K.; Keller, S., Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophysical Journal 2004, 86 (5), 2910-2922.
70. Heberle, F. A.; Wu, J.; Goh, S. L.; Petruzielo, R. S.; Feigenson, G. W., Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophysical Journal 2010, 99 (10), 3309-3318.
71. Uppamoochikkal, P.; Tristram-Nagle, S.; Nagle, J. F., Orientation of tie-lines in the phase diagram of DOPC/DPPC/cholesterol model biomembranes. Langmuir 2010, 26 (22), 17363-17368.
72. Yang, S.-T.; Kiessling, V.; Tamm, L. K., Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion. Nature Communications 2016, 7, 11401.
73. Ryan, T. M.; Caine, J.; Mertens, H. D.; Kirby, N.; Nigro, J.; Breheney, K.; Waddington, L. J.; Streltsov, V. A.; Curtain, C.; Masters, C. L., Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ 2013, 1, e73.
74. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T., How to measure and predict the molar absorption coefficient of a protein. Protein Science 1995, 4 (11), 2411-2423.
75. Marsh, D., Lateral pressure in membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1996, 1286 (3), 183-223.
76. Martin, P.; Szablewski, M., Langmuir-Blodgett troughs operating manual 6th edition. Nima Technology Ltd, England 2001.
77. Arzenšek, D. In Dynamic light scattering and application to proteins in solutions, Seminar, Department of Physics, University of Ljubljana, 2010; pp 1-18.
78. Stottrup, B. L.; Stevens, D. S.; Keller, S. L., Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems. Biophys J 2005, 88 (1), 269-76.
79. Stottrup, B. L.; Stevens, D. S.; Keller, S. L., Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems. Biophysical Journal 2005, 88 (1), 269-276.
80. Yang, S.-T.; Kiessling, V.; Simmons, J. A.; White, J. M.; Tamm, L. K., HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nature Chemical Biology 2015, 11 (6), 424-431.
81. McHenry, A. J.; Sciacca, M. F.; Brender, J. R.; Ramamoorthy, A., Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes? Biochimica et Biophysica Acta (BBA)-Biomembranes 2012, 1818 (12), 3019-3024.
82. Sciacca, M. F.; Kotler, S. A.; Brender, J. R.; Chen, J.; Lee, D.-k.; Ramamoorthy, A., Two-step mechanism of membrane disruption by Aβ through membrane fragmentation and pore formation. Biophysical Journal 2012, 103 (4), 702-710.
83. McLaurin J, C. A., Membrane Disruption by Alzheimer β-Amyloid Peptides Mediated through Specific Binding to Either Phospholipids or Gangliosides. J Biol Chem. 1996, 271 (43), 26482-9.
84. Williams, T. L.; Day, I. J.; Serpell, L. C., The effect of Alzheimer’s Aβ aggregation state on the permeation of biomimetic lipid vesicles. Langmuir 2010, 26 (22), 17260-17268.
85. Broersen, K.; Jonckheere, W.; Rozenski, J.; Vandersteen, A.; Pauwels, K.; Pastore, A.; Rousseau, F.; Schymkowitz, J., A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer′s disease. Protein Engineering, Design & Selection 2011, 24 (9), 743-750.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2017-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明