博碩士論文 104324032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.119.131.178
姓名 張郁萱(Yu-Hsuan Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
(Specificity enhancement of PCR and qPCR by using neutralized DNA (nDNA) as primer or targeting probe)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究
★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性
★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量
★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定
★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究★ 利用核適體作為訊號放大器於矽奈米線場效電晶體免疫感測器對生物標記物進行定量分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 即時聚合酶鏈鎖反應(qPCR)被廣泛應用於分子研究與診斷上,尤其是核酸分子的定量與檢測。qPCR結合PCR放大及偵測每個循環的螢光訊號,來達到即時定量的目的,由於不需要使用電泳來檢測PCR產物,因此能夠更精確的定量與分析實驗結果。
然而,研究發現許多疾病的成因是緣於單一核苷酸的突變,並且難以被一般DNA引子或探針辨識,而錯誤的診斷常造成治療的延誤。為了使疾病的診斷更為準確,以現有分子檢測為主的PCR或qPCR而言,只能從核酸放大及標定所需的primer與targeting probe來增加專一性。本研究利用一種核酸類似物,促使兩股DNA間的靜電排斥力下降,以便在進行互補股序列雜交時可以形成更穩定的雙股螺旋結構。期望在特定的PCR操作條件及核酸類似物的設計下,使perfect match之Tm上升或是mismatch之Tm下降,以獲得更大的ΔTm,並藉由調整PCR實驗過程中引子與模板進行結合時的黏合溫度(Annealing temperature)來達到專一性的提升。
在本研究中,針對PCR及qPCR檢測平台進行引子與探針的修飾,利用修飾核酸類似物來增加其專一性。從實驗結果可以得知,經過核酸類似物修飾的引子在辨識單一鹼基錯誤配對上的能力是明顯優於一般DNA引子,此外,在特定的PCR條件下,提升黏合溫度能夠使改質後的引子的辨識效果更加專一。在SNP基因分型的實驗中,將1-2個核酸類似物修飾在帶有不同螢光分子的TaqMan probe上,並與一般TaqMan probe和LNA probe進行比較,實驗結果顯示,帶有核酸類似物的探針不僅具有相似的分型表現,隨著黏合溫度的調整,還可以增加實驗的專一性。期望未來能夠運用此種核酸類似物的特性,建立相關之最佳化操作條件與核酸類似物的設計,以便能提供更高精確度之生物分子檢測平台。
摘要(英)
Quantitative polymerase chain reaction (qPCR) is one of the powerful techniques for detection and quantification of nucleic acids and has enormous utilization in molecular research and diagnostics. qPCR combines PCR amplification and detection into a single step. This eliminates the need to detect products using gel electrophoresis, and provides a more precise quantification.
Nevertheless, some diseases which are caused by single nucleotide mutation are difficult to identify when using native DNA primers and probes. A false diagnosis may lead to incorrect treatment or delayed treatment. In order to achieve more accurate detection and diagnosis of the diseases, we need to develop a more precise method. For the existing molecular detection methods, PCR or qPCR, can only increase the specificity from the nucleic acid amplification of the desired primers and targeting probes.
With the aim of enhancing the specificity, we use neutralized DNA (nDNA) which is a DNA analogue with the backbone phosphate groups replaced by phosphate methylated groups to modify DNA primers and probes. Because of the reduction of electrostatic repulsion, the complementary nDNA/DNA duplex shows stronger hybridization affinity compared to the DNA/DNA duplex. It is expected to obtain greater ΔTm and the enhancement of specifity through the adjustment of PCR operating conditions and the desing of nDNA.
In this study, we focus on the specificity enhancement of PCR and qPCR assay with primers and probes containing one and/or two nDNA base. According to the experimental results, we observe that the nDNA-modified primers have better discrimination ability between perfect match oligonucleotide and mismatch oligonucleotide than the native DNA primers and the intensity ratio can achieve 3 times higher with increasing temperature under certain PCR conditions. In SNP (Single Nucleotide Polymorphism) genotyping experiments, the results demonstrate that nDNA-taqMan probes can improve the specificity with increasing annealing temperature and perform as well as taqMan probes and LNA-TaqMan probes. Consequently, nDNA is a promising DNA analogue applied in primers and probes to enhance the specificity, and provide a more precise detection.
It is expected to use the properties of nDNA in the future to establish the optimal PCR operating conditions and nDNA design to provide a higher accuracy biomolecular detection platform.
關鍵字(中) ★ 專一性 關鍵字(英) ★ specificity
論文目次
中文摘要 i
Abstract iii
誌謝 v
圖目錄 ix
表目錄 xi
第一章 緒論 1
第二章 文獻回顧 3
2.1核酸分子 3
2.1.1核酸分子介紹 3
2.1.2去氧核醣核酸結構 4
2.1.3核醣核酸結構 6
2.1.4微小核醣核酸 7
2.2核酸類似物 8
2.2.1肽核酸 9
2.2.2鎖核酸 10
2.2.3磷酸根甲基化去氧核醣核酸 12
2.3單一核苷酸多型性 16
2.3.1 SNP簡介 16
2.3.2錯誤配對辨識能力之研究 18
2.4分子生物檢測平台 19
2.4.1紫外光/可見光光譜儀 19
2.4.2聚合酶鏈鎖反應 20
2.4.3即時定量聚合酶鏈鎖反應 24
第三章 實驗藥品、儀器設備與方法 29
3.1 實驗藥品 29
3.2 儀器設備 32
3.3實驗方法 33
3.3.1 雜交反應實驗 33
3.3.2聚合酶鏈鎖反應實驗 35
3.3.3即時聚合酶鏈鎖反應實驗 37
3.3.4 SYBR Green螢光熔點測量儀實驗 38
第四章 結果與討論 41
4.1 nDNA修飾引子是否影響酵素作用之探討 41
4.2設計nDNA引子以提升專一性之探討 46
4.2.1 nDNA引子用於pUC19模板之專一性探討 47
4.2.2 nDNA引子用於miRNA模板之專一性探討 54
4.3設計nDNA探針以提升專一性之探討 60
第五章 結論 66
第六章 參考文獻 68
參考文獻

1.Dahm, R., Friedrich Miescher and the discovery of DNA. Developmental Biology, 2005. 278(2): p. 274-288.
2.Watson, J.D. and F.H. Crick, A structure for deoxyribose nucleic acid. Nature, 1953. 171: p. 737-738.
3.Collins, F.S., et al., New Goals for the U.S. Human Genome Project: 1998-2003. Science, 1998. 282(5389): p. 682.
4.Wing, R., et al., Crystal structure analysis of a complete turn of B-DNA. Nature, 1980. 287(5784): p. 755-758.
5.Tullius, T.D. and B.A. Dombroski, Hydroxyl radical "footprinting": high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proceedings of the National Academy of Sciences of the United States of America, 1986. 83(15): p. 5469-5473.
6.Leslie, A.G.W., et al., Polymorphism of DNA double helices. Journal of Molecular Biology, 1980. 143(1): p. 49-72.
7.Xiong, Y. and M. Sundaralingam, Crystal structure of a DNA·RNA hybrid duplex with a polypurine RNA r(gaagaagag) and a complementary polypyrimidine DNA d(CTCTTCTTC). Nucleic Acids Research, 2000. 28(10): p. 2171-2176.
8.Rich, A., The biology of left-handed Z-DNA. Journal of Biological Chemistry, 1996. 271(20): p. 11595-11598.
9.Wang, A.H.J., et al., Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 1979. 282(5740): p. 680-686.
10.Higgs, P.G., RNA Secondary Structure: Physical and Computational Aspects. 2000: Cambridge University Press.
11.Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75(5): p. 843-854.
12.Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. nature, 2000. 403(6772): p. 901-906.
13.Pasquinelli, A.E., et al., Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000. 408(6808): p. 86-89.
14.Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-355.
15.Bartel, D.P., MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 2004. 116(2): p. 281-297.
16.Sen, G.L. and H.M. Blau, Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol, 2005. 7(6): p. 633-636.
17.Valencia-Sanchez, M.A., et al., Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & development, 2006. 20(5): p. 515-524.
18.Yan, L.-X., et al., MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. Rna, 2008. 14(11): p. 2348-2360.
19.Zhang, Z., et al., miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Laboratory investigation, 2008. 88(12): p. 1358-1366.
20.Zhang, J.-g., et al., MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clinica chimica acta, 2010. 411(11): p. 846-852.
21.Palmer, S., et al., New Real-Time Reverse Transcriptase-Initiated PCR Assay with Single-Copy Sensitivity for Human Immunodeficiency Virus Type 1 RNA in Plasma. Journal of Clinical Microbiology, 2003. 41(10): p. 4531-4536.
22.Raymond, C.K., et al., Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. Rna, 2005. 11(11): p. 1737-1744.
23.Latorra, D., K. Arar, and J. Michael Hurley, Design considerations and effects of LNA in PCR primers. Molecular and Cellular Probes, 2003. 17(5): p. 253-259.
24.Egholm, M., et al., Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. Journal of the American Chemical Society, 1992. 114(5): p. 1895-1897.
25.Egholm, M., et al., PNA HYBRIDIZES TO COMPLEMENTARY OLIGONUCLEOTIDES OBEYING THE WATSON-CRICK HYDROGEN-BONDING RULES. Nature, 1993. 365(6446): p. 566-568.
26.Tomac, S., et al., Ionic effects on the stability and conformation of peptide nucleic acid complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
27.Oliveira, K., et al., Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. Journal of clinical microbiology, 2002. 40(1): p. 247-251.
28.Wang, J., et al., Peptide nucleic acid probes for sequence-specific DNA biosensors. Journal of the American Chemical Society, 1996. 118(33): p. 7667-7670.
29.Ray, A. and B. Norden, Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. Faseb Journal, 2000. 14(9): p. 1041-1060.
30.Obika, S., et al., Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C 3,-endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
31.Kaur, H., J. Wengel, and S. Maiti, Thermodynamics of DNA-RNA heteroduplex formation: Effects of locked nucleic acid nucleotides incorporated into the DNA strand. Biochemistry, 2008. 47(4): p. 1218-1227.
32.Levin, J.D., et al., Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic acids research, 2006. 34(20): p. e142-e142.
33.Obernosterer, G., J. Martinez, and M. Alenius, Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat. Protocols, 2007. 2(6): p. 1508-1514.
34.Koole, L.H., et al., Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
35.Kuijpers, W.H., et al., Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic Acids Research, 1990. 18(17): p. 5197-5205.
36.Coenen, A., et al., OPTIMIZATION OF THE SEPARATION OF THE RP AND SP DIASTEREOMERS OF PHOSPHATE-METHYLATED DNA AND RNA DINUCLEOTIDES. Journal of Chromatography, 1992. 596(1): p. 59-66.
37.van Genderen, M.H., L.H. Koole, and H.M. Buck, Hybridization of phosphatemethylated DNA and natural oligonucleotides. Implications for protein-induced DNA duplex destabilization. Recl. Trav. Chim. Pays-Bas, 1989. 108: p. 28-35.
38.Miller, P.S., et al., Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. Journal of the American Chemical Society, 1971. 93(24): p. 6657-6665.
39.Miller, P.S., L.T. Braiterman, and P.O. Ts′o, Effects of a trinucleotide ethyl phosphotriester, Gmp (Et) Gmp (Et) U, on mammalian cells in culture. Biochemistry, 1977. 16(9): p. 1988-1996.
40.Koole, L.H., et al. Enhanced stability of a Watson & Crick DNA duplex structure by methylation of the phosphate groups in one strand. in Proc. K. Ned. Acad. Wet. 1987.
41.陳奕儒 and Y.-J. Chen, 探討中性DNA與一般DNA雜交反應熱力學與結合機制之研究;Studies of thermodynamic and mechanism for neutralized DNA (nDNA)/DNA and DNA/DNA duplex formation. 國立中央大學.
42.Caruthers, M.H., Gene synthesis machines: DNA chemistry and its uses. Science, 1985. 230(4723): p. 281.
43.Stoneking, M., Single nucleotide polymorphisms: From the evolutionary past. Nature, 2001. 409(6822): p. 821-822.
44.Cargill, M., et al., Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet, 1999. 22(3): p. 231-238.
45.You, Y., et al., Design of LNA probes that improve mismatch discrimination. Nucleic Acids Research, 2006. 34(8): p. e60-e60.
46.Fleige, S. and M.W. Pfaffl, RNA integrity and the effect on the real-time qRT-PCR performance. Molecular aspects of medicine, 2006. 27(2): p. 126-139.
47.Swinehart, D., The beer-lambert law. J. Chem. Educ, 1962. 39(7): p. 333.
48.Mullis, K.B., The unusual origin of the polymerase chain reaction. Scientific American, 1990. 262(4): p. 56-61.
49.Dieffenbach, C., T. Lowe, and G. Dveksler, General concepts for PCR primer design. PCR Methods Appl, 1993. 3(3): p. S30-S37.
50.Yamagami, T., et al., A longer finger-subdomain of family A DNA polymerases found by metagenomic analysis strengthens DNA binding and primer extension abilities. Gene, 2016. 576(2): p. 690-695.
51.Lundberg, K.S., et al., HIGH-FIDELITY AMPLIFICATION USING A THERMOSTABLE DNA-POLYMERASE ISOLATED FROM PYROCOCCUS-FURIOSUS. Gene, 1991. 108(1): p. 1-6.
52.McHenry, C. and W. Crow, DNA polymerase III of Escherichia coli. Purification and identification of subunits. Journal of Biological Chemistry, 1979. 254(5): p. 1748-1753.
53.Saiki, R.K., et al., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988. 239(4839): p. 487.
54.Cline, J., J.C. Braman, and H.H. Hogrefe, PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic acids research, 1996. 24(18): p. 3546-3551.
55.Ehlen, T. and L. Dubeau, Detection of ras point mutations by polymerase chain reaction using mutation-specific, inosine-containing oligonucleotide primers. Biochemical and biophysical research communications, 1989. 160(2): p. 441-447.
56.Innis, M.A., et al., PCR protocols: a guide to methods and applications. 2012: Academic press.
57.Henegariu, O., et al., Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques, 1997. 23(3): p. 504-511.
58.Tani, H., et al., Universal quenching probe system: flexible, specific, and cost-effective real-time polymerase chain reaction method. Analytical chemistry, 2009. 81(14): p. 5678-5685.
59.Echols, H. and M.F. Goodman, Fidelity mechanisms in DNA replication. Annual review of biochemistry, 1991. 60(1): p. 477-511.
60.Berg JM, T.J., Stryer L., Biochemistry. 5th edition. 2002.
61.Johnson, S.J. and L.S. Beese, Structures of mismatch replication errors observed in a DNA polymerase. Cell, 2004. 116(6): p. 803-816.
62.Vester, B. and J. Wengel, LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry, 2004. 43(42): p. 13233-13241.
63.Ballantyne, K.N., R.A.H. van Oorschot, and R.J. Mitchell, Locked nucleic acids in PCR primers increase sensitivity and performance. Genomics, 2008. 91(3): p. 301-305.
64.Petruska, J., et al., Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proceedings of the National Academy of Sciences, 1988. 85(17): p. 6252-6256.
65.Harris, S.A., Z.A. Sands, and C.A. Laughton, Molecular dynamics simulations of duplex stretching reveal the importance of entropy in determining the biomechanical properties of DNA. Biophysical journal, 2005. 88(3): p. 1684-1691.
66.Latorra, D., et al., Enhanced allele‐specific PCR discrimination in SNP genotyping using 3′ locked nucleic acid (LNA) primers. Human mutation, 2003. 22(1): p. 79-85.
67.Hayes, J., P.P. Peruzzi, and S. Lawler, MicroRNAs in cancer: biomarkers, functions and therapy. Trends in molecular medicine, 2014. 20(8): p. 460-469.
68.Hammond, S.M., RNAi, microRNAs, and human disease. Cancer Chemotherapy and Pharmacology, 2006. 58: p. S63-S68.
69.Li, H.L., et al., miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Research and Treatment, 2011. 126(3): p. 565-575.
70.He, X., et al., Increasing specificity of real time PCR to detect microRNA through primer design and annealing temperature increase. Beijing da xue xue bao. Yi xue ban= Journal of Peking University. Health sciences, 2009. 41(6): p. 691-698.
71.Ugozzoli, L.A., et al., Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Analytical biochemistry, 2004. 324(1): p. 143-152.
72.Johnson, M.P., L.M. Haupt, and L.R. Griffiths, Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real‐time PCR. Nucleic acids research, 2004. 32(6): p. e55-e55.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2017-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明