博碩士論文 104324033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.140.185.147
姓名 陳凱翔(Kai-Siang Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
(Design of Cyclopentadithiophene-Bridged Hole Transport Materials for Highly Efficient and Stable Perovskite Solar Cells)
相關論文
★ 高效率染料敏化太陽能電池及製備次模組元件之研究★ 高穿透低面電阻之氟摻雜氧化錫薄膜製備與不同霧度之氟摻雜氧化錫薄膜對染料敏化太陽電池效能的影響
★ 製備大面積染料敏化太陽能電池與其長時間穩定性之研究★ 利用溶液工程製備 高效率鈣鈦礦太陽能電池之研究
★ 高效率穩定型染料敏化太陽能模組於不同測試條件下元件表現之研究★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 鈣鈦礦膜缺陷控制及製備高效率鈣鈦礦太陽能電池★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用
★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討
★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討★ 蒸氣相成長金屬有機框架材料合成
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要探討以雙噻吩併環戊二烯為核心的電洞傳輸材料性質,並以此製作出高效率又穩定的鈣鈦礦太陽能電池。雙噻吩併環戊二烯將會連接三苯胺(triphenylamine)或咔唑(carbazole)做為電子予體,同時在中心結構上引入長碳鏈,來探討分子結構的不同對元件效率的影響,而化學結構﹅核心的共軛性對元件光電參數的表現也會在本研究中探討,並且利用分析能階﹅電洞傳導率與光致螢光光譜進一步地分析電洞傳輸材料的電洞傳導能力,並來證明電動傳輸材料核心的共平面性與分子間堆疊的關係。而以電池結構:FTO/緻密TiO2層/TiO2介孔層 /鈣鈦礦/CT3/MoO3/銀電極,元件光電轉換效率可以達到17.34%,而以常見的電洞傳輸材料Spiro-OMeTAD所做的鈣鈦礦太陽能電池其效率為17.61%。最後,以雙噻吩併環戊二烯為核心所合成出來的新穎電洞傳輸材料CT3與CT4和Spiro-OMeTAD所製備之鈣鈦礦太陽能電池在低濕度環境下經過1300小時之後的元件測試仍保持著一定的穩定性,而在相對濕度30%的測試環境下,因為CT3﹅CT4具較疏水性,使得電池有著較低的衰退性,研究結果顯示,CT系列中的CT3與CT4有著比Spiro-OMeTAD更多的應用優勢。
摘要(英) A series of small-molecule-based hole-transporting materials (HTMs) featuring a cyclopentadithiophene (CPDT) as the central core with triphenylamine- and carbazole-based side groups were designed and evaluated for efficient perovskite solar cells (PSCs) applications. The effect of the chemical structure of the HTMs and the photovoltaic performance were studied through investigation of the different combinations of the central π-bridge moieties. In this respect, the optical, electrochemical, energy level and hole mobility are systematically investigated, revealing the significantly influence of the central core planarity and packing structure on their photovoltaic performance. The optimized device based on CT3 exhibited a PCE (power conversion efficiency) of 17.34% with a device architecture of FTO/TiO2 compact layer/TiO2 mesoporous/CH3NH3PbI3/HTM/MoO3/Ag, which was found to be on par with that of a cell fabricated based on state-of-the-art Spiro-OMeTAD (17.61%) as HTM. Moreover, stability assessment showed a similar stability for CPDT-based HTMs as compared with Spiro-OMeTAD over 1300 hours. Besides, device based on CT3 and CT4 in the 30% relative humidity environment showed a better stability than Spiro-OMeTAD, indicating that the devices with CT3 and CT4 have good long-term stability.
關鍵字(中) ★ 電洞傳輸材料
★ 鈣鈦礦
★ 太陽能電池
關鍵字(英) ★ Hole transport materials
★ Perovskite
★ Solar cell
論文目次 中文摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VIII
表目錄 XIII
第1章 緒論 1
1-1 前言 1
1-1-1 太陽能電池種類介紹 4
1-1-2 無機太陽能電池 5
1-1-3 有機太陽能電池 6
1-2 鈣鈦礦太陽能電池 10
1-2-1 N-I-P結構之鈣鈦礦太陽能電池 (N-I-P structure based perovskite solar cells) 11
1-2-2 P-I-N結構之鈣鈦礦太陽能電池 (N-I-P Structure based perovskite solar cells) 18
1-2-3 影響鈣鈦礦電池的因素 19
1-3 電洞傳輸材料文獻回顧 23
1-3-1 無機電洞傳輸材料 23
1-3-2 高分子電洞傳輸材料 26
1-3-3 小分子有機電洞傳輸材料 28
1-4 研究動機 38
第2章 實驗方法 39
2-1 實驗藥品與儀器 39
2-2 鈣鈦礦太陽能電池各層材料的製備 43
2-2-1 甲基胺碘(CH3NH3I)合成 43
2-2-2 鈣鈦礦溶液配置 44
2-2-3 配置製備TiO2緻密層溶液方法 44
2-2-4 配置製備TiO2多孔層溶液方法 44
2-2-5 電洞傳輸材料(Hole transport material)的合成與製備 45
2-3 鈣鈦礦太陽能電池製作方法 48
2-3-1 基板清洗與UV-Ozone 48
2-3-2 N-I-P結構太陽能電池製作方法 49
2-3-3 移除對電極與蒸鍍銀電極 51
2-4 儀器分析原理 51
2-4-1 掃描式電子顯微鏡 51
2-4-2 太陽光模擬器 52
2-4-3 太陽能電池外部量測效率量測系統 53
2-4-4 紫外光/可見光光譜儀 54
2-4-5 原子力顯微鏡 55
2-4-6 光激發螢光光譜儀(Photoluminescence,PL,UniRAM)、拉曼散射光譜儀(Raman scattering spectrometer, UniRAM)、時間解析之螢光光譜儀( Time-resolved photoluminescence spectrometer) 56
2-4-7 熱蒸鍍鍍膜系統(thermal evaporation deposition) 57
第3章 結果與討論 58
3-1 有機小分子電洞傳輸材料之設計理念 58
3-2 有機小分子電洞傳輸材料之熱性質分析 60
3-3 有機小分子電洞傳輸材料表面薄膜分析 61
3-4 有機小分子電洞傳輸材料電化學性質之探討 64
3-5 有機小分子電洞傳輸材料光學性質之探討 68
3-6 有機小分子電洞傳輸材料之親疏水性測試 71
3-7 有機小分子電洞傳輸材料電洞傳導率(hole mobility)分析 73
3-8 有機小分子電洞傳輸材料之鈣鈦礦太陽能電池效率表現 75
3-9 經由三氧化鉬(MoO3)修飾電洞傳輸材料之鈣鈦礦太陽能電池 79
3-9-1 經由三氧化鉬(MoO3)修飾過後的電洞傳輸材料之光激發螢光分析 79
3-9-2 經由三氧化鉬(MoO3)修飾過後的電洞傳輸材料之元件效率表現分析 83
3-10 鈣鈦礦太陽能電池之穩定性測試 85
3-11 半透明式鈣鈦礦太陽能電池 89
第4章 結論 93
第5章 參考文獻 95
參考文獻
[1] Jun, T., O. Hiroji, M. Kiichiro, and T. Akio, "A Schottky Barrier Type Solar Cell Using Polyacetylene", Japanese Journal of Applied Physics, 1981. 20(2): p. L127.
[2] Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency", Science, 2011. 334(6056): p. 629-634.
[3] Xing, G., N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum, "Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3", Science, 2013. 342(6156): p. 344-347.
[4] Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells", Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
[5] Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell", Nanoscale, 2011. 3(10): p. 4088-4093.
[6] Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%", 2012. 2: p. 591.
[7] Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%", Scientific Reports, 2012. 2.
[8] Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites", Science, 2012. 338(6107): p. 643-647.
[9] Noh, J.H., S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells", Nano Letters, 2013. 13(4): p. 1764-1769.
[10] Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Gratzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells", Nature, 2013. 499(7458): p. 316-319.
[11] Liu, M., M.B. Johnston, and H.J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition", Nature, 2013. 501(7467): p. 395-398.
[12] Zhou, H., Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, "Interface engineering of highly efficient perovskite solar cells", Science, 2014. 345(6196): p. 542-546.
[13] Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange", Science, 2015. 348(6240): p. 1234-1237.
[14] Bi, D., W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, "Efficient luminescent solar cells based on tailored mixed-cation perovskites", Science Advances, 2016. 2(1).
[15] Saliba, M., T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency", Energy & Environmental Science, 2016. 9(6): p. 1989-1997.
[16] Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, "Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process", Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
[17] Malinkiewicz, O., A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, and H.J. Bolink, "Perovskite solar cells employing organic charge-transport layers", Nat Photon, 2014. 8(2): p. 128-132.
[18] Nie, W., H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, and A.D. Mohite, "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains", Science, 2015. 347(6221): p. 522-525.
[19] Wang, Q., Q. Dong, T. Li, A. Gruverman, and J. Huang, "Thin Insulating Tunneling Contacts for Efficient and Water-Resistant Perovskite Solar Cells", Advanced Materials, 2016. 28(31): p. 6734-6739.
[20] Kim, H.-S., S.H. Im, and N.-G. Park, "Organolead Halide Perovskite: New Horizons in Solar Cell Research", The Journal of Physical Chemistry C, 2014. 118(11): p. 5615-5625.
[21] Dualeh, A., N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, and M. Grätzel, "Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells", Advanced Functional Materials, 2014. 24(21): p. 3250-3258.
[22] Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells", Nat Mater, 2014. 13(9): p. 897-903.
[23] Huang, F., Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A. Gray-Weale, J. Etheridge, C.R. McNeill, R.A. Caruso, U. Bach, L. Spiccia, and Y.-B. Cheng, "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells", Nano Energy, 2014. 10: p. 10-18.
[24] Christians, J.A., R.C.M. Fung, and P.V. Kamat, "An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide", Journal of the American Chemical Society, 2014. 136(2): p. 758-764.
[25] Qin, P., S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Grätzel, "Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency", Nature Communications, 2014. 5: p. 3834.
[26] Li, M.-H., P.-S. Shen, K.-C. Wang, T.-F. Guo, and P. Chen, "Inorganic p-type contact materials for perovskite-based solar cells", Journal of Materials Chemistry A, 2015. 3(17): p. 9011-9019.
[27] Subbiah, A.S., A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S.K. Sarkar, "Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells", The Journal of Physical Chemistry Letters, 2014. 5(10): p. 1748-1753.
[28] Wang, K.-C., P.-S. Shen, M.-H. Li, S. Chen, M.-W. Lin, P. Chen, and T.-F. Guo, "Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells", ACS Applied Materials & Interfaces, 2014. 6(15): p. 11851-11858.
[29] Kim, J.H., P.-W. Liang, S.T. Williams, N. Cho, C.-C. Chueh, M.S. Glaz, D.S. Ginger, and A.K.Y. Jen, "High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer", Advanced Materials, 2015. 27(4): p. 695-701.
[30] Heo, J.H., S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-j. Kim, A. Sarkar, K. NazeeruddinMd, M. Gratzel, and S.I. Seok, "Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors", Nat Photon, 2013. 7(6): p. 486-491.
[31] Edri, E., S. Kirmayer, D. Cahen, and G. Hodes, "High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite", The Journal of Physical Chemistry Letters, 2013. 4(6): p. 897-902.
[32] Di Giacomo, F., S. Razza, F. Matteocci, A. D′Epifanio, S. Licoccia, T.M. Brown, and A. Di Carlo, "High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer", Journal of Power Sources, 2014. 251: p. 152-156.
[33] Guo, Y., C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, "Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer", Journal of Materials Chemistry A, 2014. 2(34): p. 13827-13830.
[34] Bach, U., D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies", Nature, 1998. 395(6702): p. 583-585.
[35] Krüger, J., R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, "High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination", Applied Physics Letters, 2001. 79(13): p. 2085-2087.
[36] Burschka, J., A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M.K. Nazeeruddin, and M. Grätzel, "Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells", Journal of the American Chemical Society, 2011. 133(45): p. 18042-18045.
[37] Li, H., K. Fu, A. Hagfeldt, M. Grätzel, S.G. Mhaisalkar, and A.C. Grimsdale, "A Simple 3,4-Ethylenedioxythiophene Based Hole-Transporting Material for Perovskite Solar Cells", Angewandte Chemie International Edition, 2014. 53(16): p. 4085-4088.
[38] Petrus, M.L., T. Bein, T.J. Dingemans, and P. Docampo, "A low cost azomethine-based hole transporting material for perovskite photovoltaics", Journal of Materials Chemistry A, 2015. 3(23): p. 12159-12162.
[39] Franckevicius, M., A. Mishra, F. Kreuzer, J. Luo, S.M. Zakeeruddin, and M. Gratzel, "A dopant-free spirobi[cyclopenta[2,1-b:3,4-b[prime or minute]]dithiophene] based hole-transport material for efficient perovskite solar cells", Materials Horizons, 2015. 2(6): p. 613-618.
[40] Saliba, M., S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, and M.K. Nazeeruddin, "A molecularly engineered hole-transporting material for efficient perovskite solar cells", Nature Energy, 2016. 1: p. 15017.
[41] Choi, H., S. Park, S. Paek, P. Ekanayake, M.K. Nazeeruddin, and J. Ko, "Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell", Journal of Materials Chemistry A, 2014. 2(45): p. 19136-19140.
[42] Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells", Nat Nano, 2014. 9(11): p. 927-932.
[43] Liu, K., Y. Yao, J. Wang, L. Zhu, M. Sun, B. Ren, L. Xie, Y. Luo, Q. Meng, and X. Zhan, "Spiro[fluorene-9,9[prime or minute]-xanthene]-based hole transporting materials for efficient perovskite solar cells with enhanced stability", Materials Chemistry Frontiers, 2017. 1(1): p. 100-110.
[44] Kwon, Y.S., J. Lim, H.-J. Yun, Y.-H. Kim, and T. Park, "A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite", Energy & Environmental Science, 2014. 7(4): p. 1454-1460.
[45] Nguyen, W.H., C.D. Bailie, E.L. Unger, and M.D. McGehee, "Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells", Journal of the American Chemical Society, 2014. 136(31): p. 10996-11001.
[46] Tao, C., S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, "Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer", Applied Physics Letters, 2008. 93(19): p. 193307.
[47] Zhu, Q., X. Bao, J. Yu, D. Zhu, M. Qiu, R. Yang, and L. Dong, "Compact Layer Free Perovskite Solar Cells with a High-Mobility Hole-Transporting Layer", ACS Applied Materials & Interfaces, 2016. 8(4): p. 2652-2657.
[48] Tan, L., C. Liu, Z. Huang, Y. Zhang, L. Chen, and Y. Chen, "Self-encapsulated semi-transparent perovskite solar cells with water-soaked stability and metal-free electrode", Organic Electronics. 2016. 5(4): p. 2165-2177
指導教授 張博凱、李坤穆(Bor-Kai Chang Kun-Mu Lee) 審核日期 2017-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明