博碩士論文 104324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.191.233.122
姓名 洪振傑(Zhen-Jie Hong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 殼聚醣奈米纖維接枝玻尿酸以擴增並提高癌症幹細胞的比例
(Proliferation and Enrichment of Cancer Stem Cells on Hyaluronic acid Grafted Chitosan Nanofibers)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 殼聚醣是常用的支架材料,具有促進癌症細胞群聚成球狀並提升幹細胞的特性。為了可以模擬體內的微環境,因此我們利用電紡絲技術製備出殼聚醣奈米纖維絲,藉由奈米纖維的疊加形成3D孔洞結構。此外,為了進一步提升癌症幹細胞的選殖效果,我們將殼聚醣電紡絲以細胞外基質玻尿酸進行改質,並與殼聚醣膜做為對照。由生長曲線結果發現,玻尿酸改質的電紡絲因其近似腫瘤微環境(niche)環境,會使細胞生長數率略微減緩,但是相較於膜上的細胞,絲上的細胞生長速率有大幅的提升。而在抗藥性實驗結果證實,玻尿酸改質所篩選的細胞其化療的耐受度有大幅的提升。藉由即時聚合酶反應(qPCR)發現從改質的電紡絲上取下的細胞具有的細胞幹性、上皮間質轉換、基質降解能力、血管新生與抗藥性等基因表現均有提升。而這些結果也可以透過侵入性與細胞遷移實驗中得到驗證。最後我們利用流式細胞儀分析,發現與所篩選的細胞其癌症幹細胞相關的CD24及CD44表面標誌比例有大幅提升,證實我們所發展的殼聚醣奈米纖維接枝玻尿酸的確能提升癌症幹細胞的比例。此基材將所擴增篩選的細胞將有助於將來在抗癌藥物的開發和癌症治療的研究。
摘要(英) Chitosan is a frequently used material for scaffold fabrication because it can promote cancer cells to form spheroid and enhance stem cell-relative characteristics. To mimic in vivo microenvironment, chitosan nanofibers were prepared using electrospinning technology, and their superposition can form a 3D porous structure. To effectively promote cancer stem cell adhesion, hyaluronic acid (HA) was grafted to electrospun chitosan fibers, and HA grafted chitosan films were applied as the control groups. The growth curve analysis demonstrated that HA modification reduced proliferation rates of surface cells because of its similarity to the cancer stem cell niche. On the other hand, cells grew on the fibers were faster than those on the films. The results of drug resistance examinations indicated that the chemotherapy tolerance of the cells collected from HA modified fibers was greatly improved. The levels of gene transcription determined by quantitative polymerase chain reaction (qPCR) indicated that the cells collected from HA modified fibers demonstrated high stemness, epithelial–mesenchymal transition, matrix degradation, angiogenesis, and drug resistance abilities. These results were consistent to their superior performances in colony formation, migration, and matrix invasion. Finally, flow cytometry analysis was applied to identify cell makers. The results indicated that the screened cells highly expressed the cancer stem cell-related makers CD24 and CD44, suggesting that the use of HA grafted chitosan fibers indeed increased the ratio of cancer stem cells. We expect these selected cells should be applicable to the development of anticancer drugs and the research of cancer therapy.
關鍵字(中) ★ 殼聚醣
★ 玻尿酸
★ 電紡絲
★ 癌症幹細胞
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1背景 1
1.2實驗目的 2
第二章 文獻回顧 3
2.1癌症 3
2.1.1癌症幹細胞 3
2.1.2癌症幹細胞特性 4
2.1.3癌症幹細胞篩選 5
2.1.4癌症幹細胞相關基因 7
2.1.5癌症幹細胞表面標記 9
2.2電紡絲 11
2.2.1電紡絲原理 11
2.2.2電紡絲於幹細胞的應用 12
2.3玻尿酸 13
2.3.1玻尿酸之來源 13
2.3.2玻尿酸之性質 13
2.3.3玻尿酸於癌症幹細胞之應用 14
2.4殼聚醣 16
2.4.1殼聚醣之來源 16
2.4.2殼聚醣之性質 17
2.4.3殼聚醣於癌症幹細胞之應用 18
2.5電紡絲複合材料 19
2.5.1電紡絲複合材料之簡介 19
2.5.2殼聚醣接枝玻尿酸反應機制 20
2.5.3支架接枝玻尿酸於癌症幹細胞之應用 21
第三章 實驗與方法 23
3.1實驗藥品 23
3.2實驗儀器 27
3.3實驗方法 29
3.3.1殼聚醣膜製備 29
3.3.2殼聚醣電紡絲纖維製備 29
3.3.3膜/纖維改質[68] 29
3.3.4纖維表面FT-IR分析 30
3.3.5纖維SEM樣本製備 30
3.3.6接觸角 31
3.3.7接枝率 31
3.3.8細胞培養 32
3.3.9細胞培養於膜和絲上型態變化 33
3.3.10細胞培養於膜和絲上細胞球大小及個數統計 33
3.3.11生長曲線實驗 34
3.3.12抗藥性實驗 34
3.3.13 Alamar Blue分析 34
3.3.14即時聚合酶反應酶(qPCR) 35
3.3.15細胞遷移實驗[33] 39
3.3.16侵入性實驗[84] 39
3.3.17流式細胞分析儀 40
第四章 結果與討論 42
4.1電紡絲纖維改質後傅立葉紅外線FTIR-ATR分析 42
4.2電紡絲纖維改質後SEM分析 43
4.3比較殼聚醣膜與殼聚醣電紡絲 45
4.3.1接觸角 45
4.3.2接枝率 47
4.3.3細胞型態 48
4.3.4細胞球大小及個數 52
4.3.5生長曲線 55
4.3.6抗藥性 57
4.4癌症幹細胞相關基因表現 60
4.4.1幹性相關基因 60
4.4.2上皮間質轉換相關基因 62
4.4.3侵入性相關基因 64
4.4.4血管新生相關基因 65
4.4.5抗藥性相關基因 66
4.5癌症幹細胞之細胞遷移 67
4.6癌症幹細胞之侵入能力 69
4.7流式細胞術 71
第五章 結論 73
第六章 參考文獻 75
參考文獻
1. Stewart, B.W. and Christopher, World Cancer Report 2014.
2. Zheng, X.Q., et al., Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: Characterization of resistant cells. International Journal of Oncology, 2010. 37(2): p. 307-315.
3. Rabbani, S.A. and A.P. Mazar, Evaluating distant metastases in breast cancer: from biology to outcomes. Cancer and Metastasis Reviews, 2007. 26(3-4): p. 663-674.
4. Kievit, F.M., et al., Proliferation and enrichment of CD133(+) glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds. Biomaterials, 2014. 35(33): p. 9137-9143.
5. Sims-Mourtada, J., et al., Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds. International Journal of Nanomedicine, 2014. 9: p. 995-1003.
6. Hartman, O., et al., Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model. Biomaterials, 2010. 31(21): p. 5700-5718.
7. Hartman, O., et al., Microfabricated Electrospun Collagen Membranes for 3-D Cancer Models and Drug Screening Applications. Biomacromolecules, 2009. 10(8): p. 2019-2032.
8. Zhao, Y.L., et al., Hyaluronic Acid-Functionalized Electrospun Polyvinyl Alcohol/Polyethyleneimine Nanofibers for Cancer Cell Capture Applications. Advanced Materials Interfaces, 2015. 2(15).
9. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006. 31(7): p. 603-632.
10. Li, Z.S., et al., Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005. 26(18): p. 3919-3928.
11. Li, Z.S. and M.Q. Zhang, Chitosan-alginate as scaffolding material for cartilage tissue engineering. Journal of Biomedical Materials Research Part A, 2005. 75A(2): p. 485-493.
12. Hsu, S.H., G.S. Huang, and F. Feng, Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes. Biomaterials, 2012. 33(9): p. 2642-2655.
13. Endo, K. and T. Terada, Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. Journal of Hepatology, 2000. 32(1): p. 78-84.
14. Williams, K., et al., CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Experimental Biology and Medicine, 2013. 238(3): p. 324-338.
15. Florczyk, S.J., et al., Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials, 2013. 34(38): p. 10143-10150.
16. Li, R.J., et al., All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells. Journal of Controlled Release, 2011. 149(3): p. 281-291.
17. Cao, L., et al., Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. Bmc Gastroenterology, 2011. 11.
18. Gao, J.X., Cancer stem cells: the lessons from pre-cancerous stem cells. Journal of Cellular and Molecular Medicine, 2008. 12(1): p. 67-96.
19. Fanali, C., et al., Cancer stem cells in colorectal cancer from pathogenesis to therapy: Controversies and perspectives. World Journal of Gastroenterology, 2014. 20(4): p. 923-942.
20. Ma, X., et al., Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes. Biomaterials, 2013. 34(18): p. 4452-4465.
21. Hosokawa, Y., et al., Oct-3/4 modulates the drug-resistant phenotype of glioblastoma cells through expression of ATP binding cassette transporter G2. Biochimica Et Biophysica Acta-General Subjects, 2015. 1850(6): p. 1197-1205.
22. Sigurdsson, V., et al., Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties. Plos One, 2011. 6(9).
23. Kiesslich, T., M. Pichler, and D. Neureiter, Epigenetic control of epithelial-mesenchymal-transition in human cancer. Molecular and Clinical Oncology, 2013. 1(1): p. 3-11.
24. 石宗憲. 漫談-腫瘤血管新生之一刀兩面. 2012; Available from: http://enews.cgu.edu.tw/files/15-1068-40365,c7109-1.php?Lang=zh-tw.
25. Ham, S.L., et al., Liquid-based three-dimensional tumor models for cancer research and drug discovery. Experimental Biology and Medicine, 2016. 241(9): p. 939-954.
26. Szotek, P.P., et al., Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(30): p. 11154-11159.
27. Pan, H.-P., M.-Y. Lung, and C.-C. Ou. Cancer and Cancer Stem Cells. 2012; Available from: http://jtp.taiwan-pharma.org.tw/111/074-077.html.
28. Zhang, L., et al., Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials, 2012. 33(2): p. 565-582.
29. Feng, S., et al., Expansion of breast cancer stem cells with fibrous scaffolds. Integrative Biology, 2013. 5(5): p. 768-777.
30. Xu, X.X., et al., Enrichment of cancer stem cell-like cells by culture in alginate gel beads. Journal of Biotechnology, 2014. 177: p. 1-12.
31. Wu, X.Z., Origin of cancer stem cells: The role of self-renewal and differentiation. Annals of Surgical Oncology, 2008. 15(2): p. 407-414.
32. Li, Y.Z., et al., Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(6): p. 1839-1844.
33. Yin, X., et al., Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. Journal of Hematology & Oncology, 2015. 8.
34. Ginestier, C., et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007. 1(5): p. 555-567.
35. Nakahata, K., et al., Aldehyde Dehydrogenase 1 (ALDH1) Is a Potential Marker for Cancer Stem Cells in Embryonal Rhabdomyosarcoma. Plos One, 2015. 10(4).
36. Chen, J.S., et al., Sonic hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/AKT signaling-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9 in liver cancer. Carcinogenesis, 2013. 34(1): p. 10-19.
37. Dave, B. and J. Chang, Treatment Resistance in Stem Cells and Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2009. 14(1): p. 79-82.
38. Takahashi, S., et al., Pilot study of MDR1 gene transfer into hematopoietic stem cells and chemoprotection in metastatic breast cancer patients. Cancer Science, 2007. 98(10): p. 1609-1616.
39. Zhu, H.T., et al., Upregulation of autophagy by hypoxia-inducible factor-1 alpha promotes EMT and metastatic ability of CD133(+) pancreatic cancer stem-like cells during intermittent hypoxia. Oncology Reports, 2014. 32(3): p. 935-942.
40. Kuphal, S. and A.K. Bosserhoff, Influence of the cytoplasmic domain of E-cadherin on endogenous N-cadherin expression in malignant melanoma. Experimental Dermatology, 2006. 15(3): p. 234-234.
41. Sekhon, K., et al., MicroRNAs and epithelial-mesenchymal transition in prostate cancer. Oncotarget, 2016. 7(41): p. 67597-67611.
42. Fantozzi, A., et al., VEGF-Mediated Angiogenesis Links EMT-Induced Cancer Stemness to Tumor Initiation. Cancer Research, 2014. 74(5): p. 1566-1575.
43. Martinez-Ramos, C. and M. Lebourg, Three-dimensional constructs using hyaluronan cell carrier as a tool for the study of cancer stem cells. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2015. 103(6): p. 1249-1257.
44. Goodison, S., V. Urquidi, and D. Tarin, CD44 cell adhesion molecules. Molecular Pathology, 1999. 52(4): p. 189-196.
45. Zohar, R., et al., Intracellular osteopontin is an integral component of the CD44-ERM complex involved in cell migration. Journal of Cellular Physiology, 2000. 184(1): p. 118-130.
46. Lesley, J., R. Hyman, and P.W. Kincade, CD44 and Its Interaction with Extracellular Matrix. Advances in Immunology, 1993. 54: p. 271-335.
47. Toole, B.P., Hyaluronan promotes the malignant phenotype. Glycobiology, 2002. 12(3): p. 37R-42R.
48. Aigner, S., et al., CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood, 1997. 89(9): p. 3385-3395.
49. King, J.B., et al., CD24 can be used to isolate Lgr5(+) putative colonic epithelial stem cells in mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2012. 303(4): p. G443-G452.
50. Lim, S.C., CD24 and human carcinoma: tumor biological aspects. Biomedicine & Pharmacotherapy, 2005. 59: p. S351-S354.
51. Li, Z., CD133: a stem cell biomarker and beyond. Experimental Hematology & Oncology, 2013. 2: p. 17-17.
52. Shmelkov, S.V., et al., CD133 expression is not restricted to stem cells, and both CD133(+) and CD133(–) metastatic colon cancer cells initiate tumors. The Journal of Clinical Investigation, 2008. 118(6): p. 2111-2120.
53. Baba, T., et al., Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene, 2008. 28(2): p. 209-218.
54. HIBI, K., et al., Demethylation of the CD133 Gene Is Frequently Detected in Advanced Colorectal Cancer. Anticancer Research, 2009. 29(6): p. 2235-2237.
55. Langan, R.C., et al., Colorectal Cancer Biomarkers and the Potential Role of Cancer Stem Cells. Journal of Cancer, 2013. 4(3): p. 241-250.
56. Szot, C.S., et al., Investigation of cancer cell behavior on nanofibrous scaffolds. Materials Science & Engineering C-Materials for Biological Applications, 2011. 31(1): p. 37-42.
57. Godugu, C., et al., AlgiMatrix (TM) Based 3D Cell Culture System as an In-Vitro Tumor Model for Anticancer Studies. Plos One, 2013. 8(1).
58. Konishi, M., et al., In vivo anti-tumor effect through the controlled release of cisplatin from biodegradable gelatin hydrogel. Journal of Controlled Release, 2003. 92(3): p. 301-313.
59. Van der Schueren, L., et al., An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 2011. 47(6): p. 1256-1263.
60. Ziabari, M., V. Mottaghitalab, and A.K. Haghi, APPLICATION OF DIRECT TRACKING METHOD FOR MEASURING ELECTROSPUN NANOFIBER DIAMETER. Brazilian Journal of Chemical Engineering, 2009. 26(1): p. 53-62.
61. Alberts, B., et al., Molecular Biology of the Cell. 1994.
62. Burdick, J.A. and G.D. Prestwich, Hyaluronic Acid Hydrogels for Biomedical Applications. Advanced Materials, 2011. 23(12): p. H41-H56.
63. Fraser, J.R.E., T.C. Laurent, and U.B.G. Laurent, Hyaluronan: Its nature, distribution, functions and turnover. Journal of Internal Medicine, 1997. 242(1): p. 27-33.
64. HYALURONIC ACID. Available from: https://www.ladysoma.com/hyaluronic-acid.
65. Tool, B.P., Hyaluronan in morphogenesis. Seminars in Cell & Developmental Biology, 2001. 12(2): p. 79-87.
66. Toole, B.P., Hyaluronan: From extracellular glue to pericellular cue. Nature Reviews Cancer, 2004. 4(7): p. 528-539.
67. Chen, P.Y., L.L.H. Huang, and H.J. Hsieh, Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 2007. 360(1): p. 1-6.
68. Huang, Y.J. and S.H. Hsu, Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids. Biomaterials, 2014. 35(38): p. 10070-10079.
69. Lee, I.C., C.C. Chuang, and Y.C. Wu, Niche Mimicking for Selection and Enrichment of Liver Cancer Stem Cells by Hyaluronic Acid-Based Multi layer Films. Acs Applied Materials & Interfaces, 2015. 7(40): p. 22188-22195.
70. Yang, C.X., et al., The High and Low Molecular Weight Forms of Hyaluronan Have Distinct Effects on CD44 Clustering. Journal of Biological Chemistry, 2012. 287(51): p. 43094-43107.
71. Bourguignon, L.Y.W., M. Shiina, and J.J. Li, Hyaluronan-CD44 Interaction Promotes Oncogenic Signaling, microRNA Functions, Chemoresistance, and Radiation Resistance in Cancer Stem Cells Leading to Tumor Progression, in Hyaluronan Signaling and Turnover, M.A. Simpson and P. Heldin, Editors. 2014. p. 255-275.
72. Jiang, D., J. Liang, and P.W. Noble, Hyaluronan in tissue injury and repair, in Annual Review of Cell and Developmental Biology. 2007. p. 435-461.
73. Slevin, M., S. Kumar, and J. Gaffney, Angiogenic Oligosaccharides of Hyaluronan Induce Multiple Signaling Pathways Affecting Vascular Endothelial Cell Mitogenic and Wound Healing Responses. Journal of Biological Chemistry, 2002. 277(43): p. 41046-41059.
74. Lee, I.C., C.C. Chuang, and Y.C. Wu, Niche Mimicking for Selection and Enrichment of Liver Cancer Stem Cells by Hyaluronic Acid-Based Multilayer Films. ACS Appl Mater Interfaces, 2015. 7(40): p. 22188-95.
75. Prashanth, K.V.H. and R.N. Tharanathan, Chitin/chitosan: modifications and their unlimited application potential - an overview. Trends in Food Science & Technology, 2007. 18(3): p. 117-131.
76. Leedy, M.R., et al., Use of Chitosan as a Bioactive Implant Coating for Bone-Implant Applications, in Chitosan for Biomaterials Ii, R. Jayakumar, M. Prabaharan, and R.A.A. Muzzarelli, Editors. 2011. p. 129-165.
77. Hirano, S., et al., Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility. Biomaterials, 2000. 21(10): p. 997-1003.
78. Deng, Y., et al., Preparation and characterization of hyaluronan/chitosan scaffold crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Polymer International, 2007. 56(6): p. 738-745.
79. Jayakumar, R., et al., Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances, 2010. 28(1): p. 142-150.
80. Min, B.M., et al., Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer, 2004. 45(21): p. 7137-7142.
81. Lenka, M. and L. Daniela, Electrospun Chitosan Based Nanofibers. Research Journal of Textile and Apparel, 2008. 12(2): p. 72-79.
82. Kievit, F.M., et al., Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials, 2010. 31(22): p. 5903-5910.
83. 余興寧, 電紡絲製備幾丁聚醣/褐藻酸鈉之奈米複合纖維結構對細胞貼附與增生之研究, in 化學工程與材料工程研究所. 2012, 國立中央大學: 桃園縣. p. 98.
84. Knutson, J.R., et al., CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Molecular Biology of the Cell, 1996. 7(3): p. 383-396.
85. Choi, Y.S., et al., Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. Journal of Biomedical Materials Research, 1999. 48(5): p. 631-639.
86. M.L. Silva, S.d., et al., Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites. 2012. (22 pp).
87. Doxorubicin Hydrochloride. 1999; Available from: https://www.drugs.com/monograph/doxorubicin-hydrochloride.html.
88. Lin, L., et al., STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH(+)/CD133(+) stem cell-like human colon cancer cells. Biochemical and Biophysical Research Communications, 2011. 416(3-4): p. 246-251.
89. Chen, J.H., et al., Prognostic Value of Cancer Stem Cell Marker ALDH1 Expression in Colorectal Cancer: A Systematic Review and Meta-Analysis. Plos One, 2015. 10(12).
90. Shaheen, R.M., et al., Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Research, 1999. 59(21): p. 5412-5416.
91. Belotti, D., et al., Matrix Metalloproteinases (MMP9 and MMP2) Induce the Release of Vascular Endothelial Growth Factor (VEGF) by Ovarian Carcinoma Cells. Cancer Research, 2003. 63(17): p. 5224.
92. Westermarck, J. and V.M. Kahari, Regulation of matrix metalloproteinase expression in turner invasion. Faseb Journal, 1999. 13(8): p. 781-792.
93. GarciaAlonso, L., R.D. Fetter, and C.S. Goodman, Genetic analysis of Laminin A in Drosophila: Extracellular matrix containing laminin A is required for ocellar axon pathfinding. Development, 1996. 122(9): p. 2611-2621.
94. Lohr, M., et al., EXTRACELLULAR-MATRIX PROTEINS IN HUMAN BILE AND GALLSTONES. European Journal of Gastroenterology & Hepatology, 1995. 7(2): p. 135-140.
95. Reichenberger, E. and B.R. Olsen, Collagens as organizers of extracellular matrix during morphogenesis. Seminars in Cell & Developmental Biology, 1996. 7(5): p. 631-638.
96. 謝世良, 流式細胞技術Flow Cytometry in 後基因體時代之生物技術. 2003.
97. Du, L., et al., CD44 is of Functional Importance for Colorectal Cancer Stem Cells. Clinical Cancer Research, 2008. 14(21): p. 6751-6760.
98. Ke, J., et al., A subpopulation of CD24(+) cells in colon cancer cell lines possess stem cell characteristics. Neoplasma, 2012. 59(3): p. 282-288.
99. Okano, M., et al., Human colorectal CD24(+) cancer stem cells are susceptible to epithelial-mesenchymal transition. International Journal of Oncology, 2014. 45(2): p. 575-580.
100. Wang, F., et al., Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells. Journal of Cancer, 2016. 7(4): p. 408-417.
101. Ye, J., et al., Enrichment of colorectal cancer stem cells through epithelial-mesenchymal transition via CDH1 knockdown. Molecular Medicine Reports, 2012. 6(3): p. 507-512.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明