博碩士論文 104324037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:13.58.39.23
姓名 邱品銓(Pin-Chiuan Chiou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
(REDUCING THE INTERACTION BETWEEN AMYLOID β AND MEMBRANE BY CHANGING LIPID PACKING DENSITY)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 澱粉樣蛋白β(Aβ)胜肽是在患有阿茨海默症(AD)的大腦中,普遍存在的蛋白質斑塊主要成分,因此長期以來研究人員在為阿茨海默症開發有效的診斷和治療方法受到密切關注。雖然過去的研究集中在Aβ的聚集行為及其抑制,但最近的一些研究已經指出了在Aβ與神經膜之間致病相關性的相互作用,為相關的研究鋪平了道路。在這裡,為了解決許多關於Aβ與膜之間相互作用尚未解決的問題,我們採用由磷脂酰膽鹼和磷脂酰甘油組成的二元脂質體作為模型系統,並通過改變其脂質的鏈烴類型(即長度和飽和度)來調節其分子排列密度並調查膜的物理性質如何影響不同聚集狀態下膜與Aβ之間的相互作用。值得注意的是,雖然具有較不緊密和有序包裝的膜對由寡聚體Aβ(> 30kDa)誘導的結構干擾敏感,藉由形成類似孔狀結構,如用原子力顯微鏡(AFM)成像,但膜並不能通過Aβ與膜的相互作用輕易地被分解。相比之下,通過結合AFM、X光散射和螢光洩漏的測量顯示,具有更緊密且有序的脂質膜被Aβ變厚且容易被分解。這些發現表明膜的排列密度是Aβ與膜相互作用的關鍵決定因素。由於人類神經膜的脂質組成會隨著年齡的增長而變化,這樣的變化提高了膜的排列密度,據臨床觀察指出阿茨海默症發病率隨年齡急劇增加,我們的發現可能是構成此現象的起因。增加不飽和磷脂質的量或扭轉膜緊密排列的趨勢可能是對付阿茨海默症的一種方式。
摘要(英) Amyloid β (Aβ) peptides are the major component of the proteinaceous plaques prevalent in the brains afflicted with Alzheimer′s disease (AD), and therefore have long drawn researchers’ close attention in their efforts to develop effective diagnostics and therapeutics for AD. While past researches had focused on the aggregation behavior of Aβ and its suppression, some very recent studies have pointed to the pathogenic relevance of the interactions between Aβ and neuronal membranes, thus paving a new way for the related researches. Here, to help address many unresolved questions regarding the Aβ-membrane interactions, we adopt the binary liposomes composed of phosphatidylcholine and phosphatidylglycerol as model systems and modulate their molecular packing densities by changing the types (i.e., lengths and saturation) of the hydrocarbon chains of the lipids to investigate how changes in the physical property of a membrane affect the interactions between the membranes and Aβ in different aggregation states. Remarkably, while the membranes with less tight and ordered packing are susceptible to the structural disturbances induced by oligomeric Aβ (>30 kDa), through the formation of pore-like structures, as imaged with the atomic force microscopy (AFM), the membranes cannot be disintegrated by the Aβ-membrane interactions with ease. In contrast, the membranes with the lipids packed more tightly and orderly are thickened and readily disintegrated by Aβ, as revealed by the X-ray scattering and fluorescent leakage assays combined with AFM, respectively. These findings demonstrate that the packing density of a membrane is a key determinant of the Aβ-membrane interactions. Since the lipid compositions of human neuronal membranes change with age, which raises the packing density of the membranes, our findings may underlie the clinical observation that the incidence of AD increases sharply with age. Increasing the amount of unsaturated phospholipid or even reversing the trend of tight packing of the membrane might constitute a way of fighting AD.
關鍵字(中) ★ 阿茲海默症
★ 類澱粉樣蛋白β
★ 螢光洩漏
★ 原子力顯微鏡
★ 排列密度
關鍵字(英) ★ Alzheimer′s disease
★ Amyloid β
★ Fluorescence leakage
★ AFM
★ Packing density
論文目次 摘要 I
Abstract II
致謝 IV
Table of Contents V
List of Figures VIII
List of Tables X
List of Equations XI
List of Abbreviations XII
Chapter 1 Introduction 1
1-1. Alzheimer′s Disease 1
1-1-1. Appearance of amyloid β and structural change 1
1-1-2. Pathogenic feature and correlation between neurons and protein 5
1-2. Membrane 6
1-2-1. Cell membrane 6
1-2-2. Phospholipid 8
1-3. Model Lipid Membranes 10
1-4. Packing Defect of Cell Membrane Induced Amyloid β Deposition 13
1-5. Motivation 14
Chapter 2 Materials and Methods 16
2-1. Materials 16
2-1-1. Phospholipid 16
2-1-2. Peptide 30
2-1-3. Non-biological materials 34
2-2. Sample Preparation 35
2-2-1. Preparation of liposome for AFM 35
2-2-2. Preparation of liposome containing fluorescence dye 37
2-2-3. Preparation of supported lipid bilayer 38
2-2-4. Preparation of peptides 41
2-2-5. Monolayer on Langmuir trough 43
2-3. Dynamic Light Scattering Measurement 44
2-4. Fluorescence Measurement 46
2-4-1. Leakage of fluorescence dye measurement 48
2-4-2. Thioflavin T assay of Aβ 52
2-5. Atomic Force Microscope Experiment 53
2-6. Langmuir Trough Measurement 54
2-7. Spectrum Measurement 57
2-7-1. Circular dichroism 57
2-7-2. Ultraviolet absorption method 60
2-8. Data Processing 62
2-8-1. Matlab 62
2-8-2. Origin 64
2-8-3. Model fitting by using fityk 65
2-8-4. Image of atomic force microscope 67
Chapter 3 Result 68
3-1. The Effect of Composition on the Packing Density in Liposomes 68
3-1-1. Surface pressure 68
3-1-2. Compression modulus 72
3-2. Interaction Between Peptides and Liposomes 76
3-2-1. Identifying the state of Aβ 76
3-2-2. Leakage measurement for the Aβ in three aggregation states 80
3-3. Amyloid β on Supported Lipid Bilayer 84
3-3-1. Identification of supported lipid bilayer 84
3-3-2. Peptides destroyed the integrity of the supported lipid bilayer 87
3-3-3. Peptide induced pore-like structure formation on the membrane 93
3-4. Identifying the Change of Membrane Thickness with SAXS 97
Chapter 4 Discussion 102
4-1. Molecular Packing of Monolayers with Different Lipid Compositions 102
4-1-1. The effect of varying lipid composition on the molecular packing 102
4-1-2. Compression modulus and membrane compressibility 104
4-2. Various States of Aβ Induce Leakage in the Different Composition 106
4-3. The Effect of Destructive Peptides on Supported Lipid Bilayers 109
4-4. Leakage with Time-Course Measurement in the Different Composition 113
4-5. Changing of Membrane Thickness Induced by Aβ 115
4-6. Difference between Pore and Pore-Like Structure 117
4-7. Mechanism of the Interaction between Aβ and Membrane 118
4-8. Comparison of Aβ and Melittin 119
Chapter 5 Conclusion 120
Reference 122
參考文獻

1. Priller, C.; Bauer, T.; Mitteregger, G.; Krebs, B.; Kretzschmar, H. A.; Herms, J., Synapse formation and function is modulated by the amyloid precursor protein. Journal of Neuroscience 2006, 26 (27), 7212-7221.
2. Terry, R. D.; Masliah, E.; Salmon, D. P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L. A.; Katzman, R., Physical basis of cognitive alterations in Alzheimer′s disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology 1991, 30 (4), 572-580.
3. Cárdenas-Aguayo, M. d. C.; Silva-Lucero, M. d. C.; Cortes-Ortiz, M.; Jiménez-Ramos, B.; Gómez-Virgilio, L.; Ramírez-Rodríguez, G.; Vera-Arroyo, E.; Fiorentino-Pérez, R.; García, U.; Luna-Muñoz, J., Physiological role of amyloid beta in neural cells: the cellular trophic activity. InTech 2014, 1-24.
4. McLaurin, J.; Yang, D.-S.; Yip, C.; Fraser, P., Review: modulating factors in amyloid-β fibril formation. Journal of Structural Biology 2000, 130 (2-3), 259-270.
5. Butterfield, S. M.; Lashuel, H. A., Amyloidogenic protein–membrane interactions: mechanistic insight from model systems. Angewandte Chemie International Edition 2010, 49 (33), 5628-5654.
6. Yanagisawa, K.; Odaka, A.; Suzuki, N.; Ihara, Y., GM1 ganglioside–bound amyloid β–protein (Aβ): A possible form of preamyloid in Alzheimer′s disease. Nature Medicine 1995, 1 (10), 1062-1066.
7. Sugiura, Y.; Ikeda, K.; Nakano, M., High membrane curvature enhances binding, conformational changes, and fibrillation of amyloid-β on lipid bilayer surfaces. Langmuir 2015, 31 (42), 11549-11557.
8. Ciccotosto, G. D.; Tew, D. J.; Drew, S. C.; Smith, D. G.; Johanssen, T.; Lal, V.; Lau, T.-L.; Perez, K.; Curtain, C. C.; Wade, J. D., Stereospecific interactions are necessary for Alzheimer disease amyloid-β toxicity. Neurobiology of Aging 2011, 32 (2), 235-248.
9. Hung, L. W.; Ciccotosto, G. D.; Giannakis, E.; Tew, D. J.; Perez, K.; Masters, C. L.; Cappai, R.; Wade, J. D.; Barnham, K. J., Amyloid-β peptide (Aβ) neurotoxicity is modulated by the rate of peptide aggregation: Aβ dimers and trimers correlate with neurotoxicity. Journal of Neuroscience 2008, 28 (46), 11950-11958.
10. Masters, C. L.; Selkoe, D. J., Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine 2012, 2 (6), a006262.
11. Lorenzo, A.; Yuan, M.; Zhang, Z.; Paganetti, P. A.; Sturchler-Pierrat, C.; Staufenbiel, M.; Mautino, J.; Vigo, F. S.; Sommer, B.; Yankner, B. A., Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer′s disease. Nature Neuroscience 2000, 3 (5), 460-464.
12. Jin, M.; Shepardson, N.; Yang, T.; Chen, G.; Walsh, D.; Selkoe, D. J., Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proceedings of the National Academy of Sciences 2011, 108 (14), 5819-5824.
13. Crouch, P. J.; White, A. R.; Bush, A. I., The modulation of metal bio‐availability as a therapeutic strategy for the treatment of Alzheimer′s disease. FEBS Journal 2007, 274 (15), 3775-3783.
14. Arispe, N.; Pollard, H. B.; Rojas, E., Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proceedings of the National Academy of Sciences 1993, 90 (22), 10573-10577.
15. Tofoleanu, F.; Buchete, N.-V., Alzheimer Aβ peptide interactions with lipid membranes: fibrils, oligomers and polymorphic amyloid channels. Prion 2012, 6 (4), 339-345.
16. Mouritsen, O. G., Lipids, curvature, and nano‐medicine. European Journal of Lipid Science and Technology 2011, 113 (10), 1174-1187.
17. Shah, J. C.; Sadhale, Y.; Chilukuri, D. M., Cubic phase gels as drug delivery systems. Advanced Drug Delivery Reviews 2001, 47 (2), 229-250.
18. Torchilin, V. P., Multifunctional nanocarriers. Advanced Drug Delivery Reviews 2012, 64, 302-315.
19. Williams, T. L.; Johnson, B. R.; Urbanc, B.; Jenkins, A. T. A.; Connell, S. D.; Serpell, L. C., Aβ42 oligomers, but not fibrils, simultaneously bind to and cause damage to ganglioside-containing lipid membranes. Biochemical Journal 2011, 439 (1), 67-77.
20. Imamura, R.; Shimanouchi, T.; Murata, N.; Yamashita, K.; Fukuzawa, M.; Noda, M., Detection of Fibrillization Process of Amyloid Beta Protein Using Arrayed Biosensor with Liposome Encapsulating Fluorescent Molecules. Procedia Engineering 2016, 168, 1414-1417.
21. Pillot, T.; Goethals, M.; Vanloo, B.; Talussot, C.; Brasseur, R.; Vandekerckhove, J.; Rosseneu, M.; Lins, L., Fusogenic properties of the C-terminal domain of the Alzheimer β-amyloid peptide. Journal of Biological Chemistry 1996, 271 (46), 28757-28765.
22. Calderón, R. O.; DeVries, G. H., Lipid composition and phospholipid asymmetry of membranes from a Schwann cell line. Journal of Neuroscience Research 1997, 49 (3), 372-380.
23. Bertrand, N.; Bouvet, C.; Moreau, P.; Leroux, J.-C., Transmembrane pH-gradient liposomes to treat cardiovascular drug intoxication. 2010.
24. Killian, J. A.; de Kruijff, B., Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochimica et Biophysica Acta (BBA)-Biomembranes 2004, 1666 (1), 275-288.
25. Marsh, D., Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophysical Journal 2007, 93 (11), 3884-3899.
26. van Rooijen, B. D.; Claessens, M. M.; Subramaniam, V., Lipid bilayer disruption by oligomeric α-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochimica et Biophysica Acta (BBA)-Biomembranes 2009, 1788 (6), 1271-1278.
27. Haass, C.; Selkoe, D. J., Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer′s amyloid β-peptide. Nature Reviews Molecular Cell Biology 2007, 8 (2), 101-112.
28. Benilova, I.; Karran, E.; De Strooper, B., The toxic A [beta] oligomer and Alzheimer′s disease: an emperor in need of clothes. Nature Neuroscience 2012, 15 (3), 349.
29. Qiang, W.; Yau, W.-M.; Schulte, J., Fibrillation of β amyloid peptides in the presence of phospholipid bilayers and the consequent membrane disruption. Biochimica et Biophysica Acta (BBA)-Biomembranes 2015, 1848 (1), 266-276.
30. Gillman, A. L.; Lee, J.; Ramachandran, S.; Capone, R.; Gonzalez, T.; Wrasidlo, W.; Masliah, E.; Lal, R., Small molecule NPT-440-1 inhibits ionic flux through Aβ 1-42 pores: Implications for Alzheimer′s disease therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine 2016, 12 (8), 2331-2340.
31. De Strooper, B.; Chávez Gutiérrez, L., Learning by failing: ideas and concepts to tackle γ-secretases in Alzheimer′s disease and beyond. Annual Review of Pharmacology and Toxicology 2015, 55, 419-437.
32. Doody, R. S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R. G., A phase 3 trial of semagacestat for treatment of Alzheimer′s disease. New England Journal of Medicine 2013, 369 (4), 341-350.
33. Jass, J.; Tjärnhage, T.; Puu, G., From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: an atomic force microscopy study. Biophysical Journal 2000, 79 (6), 3153-3163.
34. Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G., Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophysical Journal 2002, 83 (6), 3371-3379.
35. Zhang-Haagen, B.; Biehl, R.; Nagel-Steger, L.; Radulescu, A.; Richter, D.; Willbold, D., Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering. PloS One 2016, 11 (2), e0150267.
36. Ryan, T. M.; Caine, J.; Mertens, H. D.; Kirby, N.; Nigro, J.; Breheney, K.; Waddington, L. J.; Streltsov, V. A.; Curtain, C.; Masters, C. L., Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ 2013, 1, e73.
37. Allen, T.; Cleland, L., Serum-induced leakage of liposome contents. Biochimica et Biophysica Acta (BBA)-Biomembranes 1980, 597 (2), 418-426.
38. Patel, H.; Tscheka, C.; Heerklotz, H., Characterizing vesicle leakage by fluorescence lifetime measurements. Soft Matter 2009, 5 (15), 2849-2851.
39. Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2010, 1804 (7), 1405-1412.
40. Groenning, M., Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. Journal of Chemical Biology 2010, 3 (1), 1-18.
41. Korshavn, K. J.; Satriano, C.; Lin, Y.; Zhang, R.; Dulchavsky, M.; Bhunia, A.; Ivanova, M. I.; Lee, Y.-H.; La Rosa, C.; Lim, M. H., Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β. Journal of Biological Chemistry 2017, 292 (11), 4638-4650.
42. Marsh, D., Lateral pressure in membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1996, 1286 (3), 183-223.
43. Correcirc, D. H.; Ramos, C. H., The use of circular dichroism spectroscopy to study protein folding, form and function. African Journal of Biochemistry Research 2009, 3 (5), 164-173.
44. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T., How to measure and predict the molar absorption coefficient of a protein. Protein Science 1995, 4 (11), 2411-2423.
45. Veatch, S. L.; Keller, S. L., Seeing spots: complex phase behavior in simple membranes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2005, 1746 (3), 172-185.
46. Feigenson, G. W., Phase behavior of lipid mixtures. Nature Chemical Biology 2006, 2 (11), 560-563.
47. Ghosh, A.; Pradhan, N.; Bera, S.; Datta, A.; Krishnamoorthy, J.; Jana, N. R.; Bhunia, A., Inhibition and Degradation of Amyloid Beta (Aβ40) Fibrillation by Designed Small Pep-tide: A Combined Spectroscopy, Microscopy and Cell Toxicity Study. ACS Chemical Neuroscience 2017.
48. Richter, R. P.; Bérat, R.; Brisson, A. R., Formation of solid-supported lipid bilayers: an integrated view. Langmuir 2006, 22 (8), 3497-3505.
49. Relini, A.; Marano, N.; Gliozzi, A., Probing the interplay between amyloidogenic proteins and membranes using lipid monolayers and bilayers. Advances in Colloid and Interface Science 2014, 207, 81-92.
50. Lewis, B. A.; Engelman, D. M., Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. Journal of Molecular Biology 1983, 166 (2), 211-217.
51. Han, C.-T.; Chao, L., Creating Air-Stable Supported Lipid Bilayers by Physical Confinement Induced by Phospholipase A2. ACS Applied Materials & Interfaces 2014, 6 (9), 6378-6383.
52. Connelly, L.; Jang, H.; Teran Arce, F.; Ramachandran, S.; Kagan, B. L.; Nussinov, R.; Lal, R., Effects of point substitutions on the structure of toxic Alzheimer’s β-amyloid channels: atomic force microscopy and molecular dynamics simulations. Biochemistry 2012, 51 (14), 3031-3038.
53. Lin, H.; Bhatia, R.; Lal, R., Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. The FASEB Journal 2001, 15 (13), 2433-2444.
54. Quist, A.; Doudevski, I.; Lin, H.; Azimova, R.; Ng, D.; Frangione, B.; Kagan, B.; Ghiso, J.; Lal, R., Amyloid ion channels: a common structural link for protein-misfolding disease. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (30), 10427-10432.
55. Szekely, P.; Dvir, T.; Asor, R.; Resh, R.; Steiner, A.; Szekely, O.; Ginsburg, A.; Mosenkis, J.; Guralnick, V.; Dan, Y., Effect of temperature on the structure of charged membranes. The Journal of Physical Chemistry B 2011, 115 (49), 14501-14506.
56. Shimanouchi, T.; Ishii, H.; Yoshimoto, N.; Umakoshi, H.; Kuboi, R., Calcein permeation across phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size, and immobilization. Colloids and Surfaces B: Biointerfaces 2009, 73 (1), 156-160.
57. London, E.; Brown, D. A., Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochimica et Biophysica Acta (BBA)-Biomembranes 2000, 1508 (1), 182-195.
58. Huang, H. W.; Chen, F.-Y.; Lee, M.-T., Molecular mechanism of peptide-induced pores in membranes. Physical Review Letters 2004, 92 (19), 198304.
59. Johannes, L.; Mayor, S., Induced domain formation in endocytic invagination, lipid sorting, and scission. Cell 2010, 142 (4), 507-510.
60. Heberle, F. A.; Petruzielo, R. S.; Pan, J.; Drazba, P.; Kučerka, N.; Standaert, R. F.; Feigenson, G. W.; Katsaras, J., Bilayer thickness mismatch controls domain size in model membranes. Journal of the American Chemical Society 2013, 135 (18), 6853-6859.
61. Williams, T. L.; Day, I. J.; Serpell, L. C., The effect of Alzheimer’s Aβ aggregation state on the permeation of biomimetic lipid vesicles. Langmuir 2010, 26 (22), 17260-17268.
62. Legleiter, J.; Fryer, J. D.; Holtzman, D. M.; Kowalewski, T., The modulating effect of mechanical changes in lipid bilayers caused by apoE-containing lipoproteins on Aβ induced membrane disruption. ACS Chemical Neuroscience 2011, 2 (10), 588-599.
63. Lee, M.-T.; Chen, F.-Y.; Huang, H. W., Energetics of pore formation induced by membrane active peptides. Biochemistry 2004, 43 (12), 3590-3599.
64. Yang, L.; Harroun, T. A.; Weiss, T. M.; Ding, L.; Huang, H. W., Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal 2001, 81 (3), 1475-1485.
65. Rouser, G.; Yamamoto, A., Curvilinear regression course of human brain lipid composition changes with age. Lipids 1968, 3 (3), 284-287.
66. Prinetti, A.; Chigorno, V.; Prioni, S.; Loberto, N.; Marano, N.; Tettamanti, G.; Sonnino, S., Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. Journal of Biological Chemistry 2001, 276 (24), 21136-21145.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明