博碩士論文 104324046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.221.139.146
姓名 林政佑(Cheng-Yu Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 油水分離多孔膜的潤濕性質
(Wetting Phenomena of Porous Films for Oil-water Separation)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用簡易快速的方法,使氧化銅於低溫真空的環境下,還原成氧化亞銅的方式,製備超疏水銅網,並應用於油水分離。當表面成分還是氧化銅時,其為親水性材料,接觸角只有56.6度,水與油類皆會滲透濾網,無法達到油水分離之目的。而經過處理,表面成分變成氧化亞銅時,其為超疏水材料,接觸角上升至152.6度,油類仍可輕易滲透過去,水則不易滲透而滯留在濾網上,便能做到油水分離,並且分離效率能達到99%以上。另外,因為這樣的製備手段並不使用其他物質塗布,其耐用性甚高,於各式鹽類溶液、酸性、鹼性、界面活性劑溶液等環境下,仍可維持超高接觸角,達到油水分離之目的。最後,進一步得知,除了接觸角之外,若能適當縮小濾網的孔隙大小,並維持其高疏水性質,能提升其耐用性,於較高水壓環境下做到油水分離。
而在工業中,也有部分狀況是採用奈米過濾膜(nanofiltration membrane)作為油水分離的材料,然而由於目前市售奈米過濾膜平均孔徑僅約1-10 nm,操作壓力通常需大於大氣壓力。本論文嘗試了解奈米過濾膜之潤濕性質,期望從潤濕性質的角度了解奈米過濾膜的其他性質,助於未來改善奈米過濾膜應用於廢水處理的效能。而在研究過程中意外發現,陶氏化學(Dow Chemical)所售的奈米過濾膜NF270,除了接觸角約20.8度,具有相當良好的親水性外,亦具有相當低接觸角遲滯的性質。2 μL的微小氣泡於微微傾斜(1.6度)、被浸潤在水相環境的NF270表面,能平順的滑移。因為NF270具有低接觸角遲滯的性質,氣泡於其表面上滑移時,並不會變形太多,維持著幾乎是圓球狀的樣子在滑移;如此觀察氣泡在界面活性劑溶液中的運動行為,即除去了形狀因素造成的影響。另外,奈米過濾膜在廢水處理中,亦被使用來阻絕特定鹽類離子滲透,達到硬水軟化的目的。一般來說,奈米過濾膜表面有些許帶有正或負電荷的官能基,以阻絕相同電性的離子。然而除了表面官能基、離子大小等因素會影響滲透結果之外,溶液中的鹽類離子種類也會互相競爭,影響滲透結果。在氯化鈉溶液中,發現氯離子較易滲透奈米過濾膜;然而在醋酸鈉溶液中,反而是鈉離子較易滲透。藉由量測奈米過濾膜兩端電位差並交互比對,便可知道離子的滲透程度。
摘要(英) In this study, a facile fabrication of superhydrophobic Cu mesh for oil-water separation is applied in a low-temperature vacuum environment. When the predominant composition of surface is CuO, it’s a hydrophilic substrate with contact angle 56o, and oil cannot be separated from water due to the penetration of both oil and water. After this facile fabrication, the composition of surface changes into Cu2O partially, and it becomes a superhydrophobic substrate with contact angle 152.6o. Oil-water separation can be achieved because oil penetrates the superhydrophobic mesh while water is repelled on the mesh. And the separation efficiency can be higher than 99%. In addition, there’s no chemicals coated on mesh in this fabrication, so the stability is pretty high. The mesh can be against various aqueous chemical drops such as salts, acid, base, and surfactant. Besides, if the pore size of a mesh is shrunk and a mesh remains hydrophobicity, the stability can be elevated and operated in an environment of higher intrusion pressure.
Nanofiltration membranes sometimes are used as the material for oil-water separation. Due to the small pore size (1-10 nm), the operation pressure should be higher than atmospheric pressure. In order to improve the performance in future works, the wetting behavior of nanofiltration membrane (Dow FILMTEC™ NF270) is investigated in this study. The contact angle of NF270 produced by Dow Chemical is 20.8o which is hydrophilic, and also it has ultralow contact angle hysteresis. A small bubble (1.6 μL) can slide steadily on 2o-inclined NF270. Because of the ultralow contact angle hysteresis, a bubble doesn’t deform and move on the surface with spherical shape. Without the effect of shape, it becomes easier to observe bubble motion in surfactant solution. Besides, nanofiltration membranes are also used to reject specific salt ions for water softening. Generally, there’s positive or negative function group on a nanofiltration membrane to reject co-ions. However, besides the effects of function group and ion size, the ions in a solution also compete and the permeation ions varies. For NaCl solution, Cl- permeates NF270 more, while for CH3COONa solution, Na+ permeates NF270 more. By measuring the potential difference and comparing the correlation of various solutions, the ion permeation can be understood easily and straightforward.
關鍵字(中) ★ 油水分離
★ 奈米過濾膜
★ 銅網
關鍵字(英) ★ Oil-water Separation
★ Nanofiltration
★ Cu mesh
論文目次
摘要...I
Abstract...III
致謝...V
目錄...VII
圖目錄...X
表目錄...XIV
第一章 緒論...1
1-1 油水分離...1
1-2 應用於油水分離之金屬濾網及奈米過濾膜...1
1-3 文獻回顧...2
1-3-1 應用於油水分離之金屬濾網...2
1-3-2 奈米過濾膜之潤濕性質及離子滲透現象...6
1-4 研究動機...7
第二章 潤濕現象基本原理...9
2-1 楊氏方程式(Young’s equation)...9
2-2 粗糙表面之潤濕現象...12
2-2-1 溫佐模型(Wenzel model)...12
2-2-2 卡西模型(Cassie model)...13
2-3 接觸角遲滯現象...15
2-3-1 接觸角遲滯的成因...16
2-3-2 接觸角遲滯的量測方法...18
第三章 實驗介紹...22
3-1 實驗藥品、材料...22
3-2 實驗儀器及其原理...24
3-2-1 影像式接觸角量測儀(Drop Shape Analyzer)...24
3-2-2 全自動接觸角儀(OCA Measuring Instrument)...25
3-2-3 高速取像光學界面與流變性質量測模組...26
3-2-4 光學顯微鏡(Optical Microscope,OM)...27
3-2-5 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)...28
3-2-6 原子力顯微鏡(Atomic Force Microscope,AFM)...30
3-2-7 X光光電子能譜儀(X-ray Photoelectron Spectroscope,XPS)...31
3-2-8 數位相機(Digital Camera)...32
3-2-9 其他儀器、設備...33
3-3 實驗操作與設計...34
3-3-1 超疏水銅網之製備...34
3-3-2 小孔徑疏水濾網之製備...35
3-3-3 超疏水銅網油水分離效率...36
3-3-4 油水分離濾網可承受之入侵水壓測試...37
3-3-5 奈米過濾膜使用之前置準備...37
3-3-6 利用高速攝影機觀察氣泡滑移速度...37
3-3-7 利用數位萬用電表與參考電極測量奈米過濾膜兩側溶液之電位差...38
第四章 油水分離用銅網研究之結果與討論...40
4-1 潤濕性質及鑑定...40
4-2 超疏水銅網油水分離效率...44
4-3 可承受之入侵水壓測試...48
第五章 奈米過濾膜低遲滯性質研究之結果與討論...52
5-1 NF270基本性質...52
5-2 NF270潤濕性質...55
5-3 氣泡於界面活性劑溶液中運動行為...60
5-4 鹽類離子對NF270之滲透現象...65
第六章 結論...68
第七章 參考文獻...70
參考文獻 [1] Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, and L. Jiang, A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation. Adv. Mater. 23, 4270-4273 (2011).
[2] K. T. Huang, S. B. Yeh, and C. J. Huang, Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Application in Antifog, Underwater Self-Cleaning, and Oil-Water Separation. Appl. Mater. Interfaces 7, 21021-21029 (2015).
[3] J. Li, R. Kang, X. Tang, H. She, Y. Yang, and F. Zha, Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale 8, 7638 (2012).
[4] F. M. Chang, S. L. Cheng, S. J. Hong, Y. J. Sheng, and H. K. Tsao, Superhydrophilicity to superhydrophobicity transition of CuO nanowire. Appl. Phys. Lett. 96, 114101 (2010).
[5] S. H. Tu, H. C. Wu, C. J. Wu, S. L. Cheng, Y. J. Sheng, H. K. Tsao, Growing hydrophobicity on a smooth copper oxide thin film at room temperature and reversible wettability transition. Appl. Surf. Sci. 316, 88-92 (2014).
[6] C. J. Wu, S. L. Cheng, Y. J. Sheng, and H. K. Tsao, Reduction-assisted sintering of micron-sized copper powders at low temperature by ethanol vapor. RSC Adv. 5, 53275 (2015).
[7] 朱仁佑、高豐生、董睿軒、鄭淑蕙,奈米纖維RO/NF膜的電性分析技術,材料最前線,台灣 2016。
[8] Eugene Park and Stanley M. Barnett, Oil/water Separation Using Nanofiltration Membrane Technology. Separ. Sci. Technol. 36, 1527-1542 (2001).
[9] R. Muppalla, S. K. Jewrajka, A.V.R. Reddy, Fouling resistant nanofiltration membranes for the separation of oil-water emulsion and micropollutants from water. Sep. Purif. Technol. 143, 125-134 (2015).
[10] J. Wang, Z. Wang, Y. Liu, J. Wang, S. Wang, Surface modification of NF membrane with zwitterionic polymer to improve anti-biofouling property. J. Membrane Sci. 514, 407-417 (2016).
[11] J. Schaep and C. Vandecasteele, Evaluating the charge of nanofiltration membranes. J. Membrane Sci. 188, 129-136 (2001).
[12] Jesus Garcia-Aleman and James M. Dickson, Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membrane: membrane charge inversion phenomena. J. Membrane Sci. 239, 163-172 (2004).
[13] Ahmed Al-Amoudi, P. Williams, A.S. Al-Hobaib, Robert W. Lovitt, Cleaning results of new and fouled nanofiltration membrane characterized by contact angle, updated DSPM, flux and salts rejection. Appl. Surf. Sci. 254, 3983-3992 (2008).
[14] Kathleen J. Stebe, S. Y. Lin, Charles Maldarelli, Remobilizing surfactant retarded fluid particle interfaces. I. Stress-free conditions at the interfaces of micellar solutions of surfactants with fast sorption kinetics. Phys. Fluids A-Fluid 3, 3 (1991).
[15] Kathleen J. Stebe and Charles Maldarelli, Remobilizing Surfactant Retarded Fluid Particle Interfaces. II. Controlling the Surface Mobility at Interfaces of Solutions Containing Surface Active Components. J. Colloid Interf. Sci. 163, 177-189 (1994).
[16] James Thomson, On certain curious Motions observable at the Surfaces of Wine and other Alcoholic Liquors. Philosophical Magazine 10, 330-333 (1855).
[17] C. Marangoni, Sull′espansione delle goccie d′un liquido galleggianti sulla superficie di altro liquido (On the expansion of a droplet of a liquid floating on the surface of another liquid). Italy. (1869).
[18] T. Young, An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London. 95, 65-87 (1805).
[19] R. N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988-994 (1936).
[20] A. Cassie and S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546-551 (1944).
[21] Y. Uyama, K. ITO Inoue, A. Kishida, Y. Ikada, Comparison of Different Methods for Contact Angle Measurement. J. Colloid Interf. Sci. 141, 275-279 (1991).
[22] O. N. Tretinnikov, Y. Ikada, Dynamic Wetting and Contact Angle Hysteresis of Polymer Surface Studied with the Modified Wilhelmy Balance Method. Langmuir 10, 1606-1614 (1994).
[23] V. Berejnov, R. E. Thorne, Effect of Transient Pinning on Stability of Drops Sitting on an Inclined Plate. Phys. Rev. E 75, 066308 (2007).
[24] de Gennes, A model for contact angle hysteresis. J. Chem. Phys. 81, 552 (1984).
[25] Jacob Israelachvili, Friction and Adhesion Hysteresis of Fluorocarbon Surfactant Monolayer-Coated Surfaces Measured with the Surface Forces Apparatus. J. Phys. Chem. B 102, 234-244 (1998).
[26] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng, and H. K. Tsao, Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning. Langmuir 27, 6890-6896 (2011).
[27] T. Yamashina and T. Nagamatsuya, Effect of Vacuum Annealing of Oxide Films on the Oxidation of Copper-Nickel Alloy. J. Electrochem. Soc. 111, 249-252 (1964).
[28] Joel van Embden and Yasuhiro Tachibana, Synthesis and characterisation of famatinite copper antimony sulfide nanocrystals. J. Mater. Chem. 22, 11466-11469 (2012).
[29] C. Zhu, A. Osherov, M. J. Panzer, Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochim. Acta 111, 771-778 (2013).
[30] J. P. Espinós, J. Morales, A. Barranco, A. Caballero, J. P. Holgado, and A. R. González-Elipe, Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2 and Cu/ZrO2 Catalysts. J. Phys. Chem. B 106, 6921-6929 (2002).
[31] Fanchi, John R.. (2006). Principles of Applied Reservoir Simulation (3rd Edition). Elsevier.
[32] T. H. Chou, S. J. Hong, Y. J. Sheng, and H. K. Tsao, Wetting Behavior of a Drop Atop Holes. J. Phys. Chem. B 114, 7509-7515 (2010).
[33] Z. Wang, H. Y. Yen, C. C. Chang, Y. J. Sheng, and H. K. Tsao, Trapped Liquid Drop at the End of Capillary. Langmuir 29, 12154-12161 (2013).
[34] IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997).
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2017-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明