博碩士論文 104324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.129.67.26
姓名 張鑑舜(Chien-Shun Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用半圓柱型吸附塔進行變壓吸附程序分離空氣之模擬研究
(Simulation study of separating oxygen from air by PSA with semicylindrical adsorber)
相關論文
★ 利用熱交換吸附塔結構設計之變壓吸附程序分離空氣製氧之模擬研究★ 雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析
★ 合成氣經富氧燃燒後利用雙塔變壓吸附程序純化二氧化碳之實驗★ 以變壓吸附程序捕獲發電廠煙道氣中二氧化碳及濃縮合成氣經富氧燃燒後中二氧化碳之研究與實驗設計分析
★ 利用雙塔變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析★ 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究以zeolite 5A分離空氣製造氧氣為對象,目標為利用模擬將兩個半圓型吸附塔與傳統雙圓柱型吸附塔變壓吸附分離程序做比較。半圓型吸附塔較傳統圓柱型吸附塔增加了熱補償效益,此效益有助於提升Skarstrom Cycle分離空氣製造氧氣的氧氣濃度。
將空氣組成簡化為21%的氧氣、1%氬氣與78%的氮氣後,以extended Langmuir isotherm model描述其等溫平衡吸附曲線,再以線性趨動力質傳阻力模型描述其氣固間吸附質傳阻力。最後以傳統圓柱型吸附塔PSA模擬程式與文獻中實驗數據驗證,證實程式及參數的可靠度後,在符合經濟效益的操作條件下將其改成半圓型吸附塔並與傳統圓柱型吸附塔做比較。
在探討完圓柱型及半圓型吸附塔各項變因後,可以得知當吸附塔由傳統的圓柱型改為半圓型後,其熱補償效益確實對分離空氣純化氧氣有所幫助。且在探討的範圍內,體積越大的裝置、越高的操作溫度下及越低的進料壓力下效益更加顯著。
摘要(英) This study utilizes zeolite 5A to separate oxygen from air in order to compare the performance of semicylindrical adsorber with that of traditional cylindrical adsorber for pressure swing adsorption. Semicylindrical adsorber can have better heat compensation during adsorption and desorption, which increases the oxygen purity in Skarstrom cycle.
The air composition is simplified to 21% oxygen, 1% argon and 78% nitrogen. The extended Langmuir isotherm model is used to describe adsorption isotherms of gas components. Linear driving force model is used to describe the mass transfer resistance between gas and solid phase. Furthermore, the simulation program is verified with experimental data. The results show the reliability of program and parameters. Then, we built a PSA process with semicylindrical adsorbers under appropriate operating conditions and compared it with a PSA process with traditional cylindrical adsorbers.
From the results of discussing the operating variables, heat compensation of semicylindrical adsorber does increase oxygen purity for oxygen separation from air, once the adsorber changed from cylindrical one into semicylindrical one. The benefit of heat compensation is more obvious for larger adsorber, higher operating and surrounding temperature, and lower feed pressure in the range of this study.
關鍵字(中) ★ 變壓吸附程序
★ 熱交換
★ 半圓柱型吸附塔
★ 空氣
關鍵字(英) ★ Pressure swing adsorption
★ Heat-exchange
★ Semicylindrical adsorber
★ Air
論文目次 中文摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄List of Figures viii
表目錄 List of Tables xii
第一章 、緒論 1
第二章 、簡介及文獻回顧 3
2-1 吸附之簡介 3
2-1-1 吸附基本原理 3
2-1-2 吸附劑及其選擇性 5
2-2 文獻回顧 6
2-2-1 PSA程序之發展與改進 6
2-2-2 理論之回顧 10
2-3 研究背景與目的 13
第三章 、理論 16
3-1 基本假設 17
3-2 統制方程式 18
3-3 吸附平衡關係式 23
3-4 參數推導 24
3-4-1 軸向分散係數 24
3-4-2 熱傳係數 26
3-5 求解的方法 29
3-5-1 閥公式 29
第四章 、製程描述 33
4-1 Skarstrom Cycle 34
4-2 參數與操作條件 36
4-2-1 Farooq空氣分離生產富氧程序之參數與操作條件 36
第五章 、結果討論與數據分析 38
5-1 Skarstrom Cycle程序模擬結果與驗證 38
5-2 半圓型吸附塔Skarstrom Cycle程序之模擬 40
5-3 塔直徑對Case 2 Skarstrom Cycle製程之影響 42
5-4 對外絕熱對Case 2 Skarstrom Cycle製程之影響 49
5-5 進料及環境溫度對Case 2 Skarstrom Cycle製程之影響 51
5-6 塔長對Case 2 Skarstrom Cycle製程之影響 54
5-7 進料加壓時間對Case 2 Skarstrom Cycle製程之影響 58
5-8 高壓產氣時間對Case 2 Skarstrom Cycle製程之影響 62
5-9 進料壓力對半圓型吸附塔Skarstrom Cycle製程之影響 67
第六章 、結論 71
6-1 結論 71
符號說明 74
參考文獻 78
附錄A、流速之估算方法 81

參考文獻 [1] S. Farooq, D. M. Ruthven, and H. A. Boniface, "Numerical simulation of a pressure swing adsorption oxygen unit," Chem. Eng. Sci, vol. 44, pp. 2809-2816, 1989.
[2] M. Simo, C. J. Brown, and V. Hlavacek, "Simulation of pressure swing adsorption in fuel ethanol production process," Comput. Chem. Eng., vol. 32, pp. 1635-1649, 2008.
[3] C. W. Skarstrom, "Esso research and engineering company". US Patent 2944627, 1960.
[4] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: science and technology, Berlin: Springer Netherlands, 1988.
[5] W. K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee, H. K. Song and B. K. Na, "Optimal operation of the pressure swing adsorption (psa) process," Korean J. Chem. Eng., vol. 20, pp. 617-623, 2003.
[6] R. T. Yang, Gas separation by adsorption process, London: Imperial College Press, 1997.
[7] G. P. de Montgreuil and D. Domine, "Process for separating a binary gaseous mixture by adsorption". United States Patent 3,155,468, 1964.
[8] B. K. Na, H. Lee, K. K. Koo and H. K. Song, "Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon," Ind. Eng. Chem. Res., vol. 41(22), pp. 5498-5503, 2002.
[9] K. Chihara and M. Suzuki, "Air drying by pressure swing adsorption," J. Chem. Eng. Jpn., vol. 16, pp. 293-299, 1983.
[10] J. J. Collins, "Air separation by adsorption". United States Patent 4,026,680, 1975.
[11] S. J. Doong and R. T. Yang, "Hydrogen purification by the multibed pressure swing adsorption process," React. Polym., vol. 6, pp. 7-13, 1987.
[12] L. Jiang, V.G. Fox and L.T. Biegler, "Simulation and optimal design of multiple-bed pressure swing adsorption systems," AIChE J., vol. 50, pp. 2904-2914, 2004.
[13] A. Fuderer and E. Rudelstorfer, "Selective adsorption process". United States Patent 3,986,849, 1976.
[14] P. H. Turnock and R. H. Kadlec, "Separation of nitrogen and methane via periodic adsorption," AIChE J., vol. 17(2), pp. 335-342, 1971.
[15] R. T. Yang and S. J. Doong, "Gas separation by pressure swing adsorption: A pore-diffusion model for bulk separation," AlChE J., vol. 31, pp. 1829-1842, 1985.
[16] S. Farooq and D. M. Ruthven, "A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process," Chem. Eng. Sci., vol. 45, pp. 107-115, 1990.
[17] E. Glueckauf and J. I. Coates, "Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation," J. Chem. Soc., vol. 0, pp. 1315-1321, 1947.
[18] L. Zhou, J. Li, Y.P. Zhou, W. Su and Y. Sun, "Experimental studies of a new compact design four-bed psa equipment for producing oxygen," AlChE J., vol. 51, pp. 2695-2701, 2005.
[19] L. Zhou, X. F. Ouyang, W. Li, S.N. Li and Y.P. Zhou, "Experiments of improving the performance of disk type psa columns in oxygen production," Sep. Sci. Technol., vol. 41, pp. 247-259, 2006.
[20] J. J. Lee, M. K. Kim, D. G. Lee, H. Ahn, M. J. Kim and C. H. Lee, "Heat-exchange pressure swing adsorption process for hydrogen separation," AlChE J., vol. 54, pp. 2054-2064, 2008.
[21] M. Pan, H. M. Omar, and S. Rohani, "Application of nanosize zeolite molecular sieves for medical oxygen concentration," J. Nanomater., vol. 7(8), 2017.
[22] C. T. Chou, and W. C. Huang, "Incorporation of a valve equation into the simulation of a pressure swing adsorption process," Chem. Eng. Sci., vol. 49, pp. 75-84, 1994.
[23] W. J. Huang, C. Y. Chen, and C. T. Chou, "Concentration and recovery of SO2 from flue gas by pressure swing adsorption," J. Chin. Inst. Chem. Eng,, vol. 37, pp. 149-157, 2006.
[24] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors, New York: Marcel Dekker, Inc., 1975.
[25] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2 ed., New York: John Wiley & Sons, Inc., 2007.
[26] E. N. Fuller, P. D. Schettler and J. C. Giddings, "A comparison of methods for predicting gaseous diffusion coefficients," Chromatogr. Sci. Ser., vol. 3, pp. 222-227, 1965.
[27] E. N. Fuller, K. Ensley and J. C. Giddings, "Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections," J. Phys. Chem., vol. 73(11), pp. 3679-3685, 1969.
[28] W. L. McCabe, J. C. Smith and P. Harriott, Unit operations of chemical engineering, 7 ed., New York: McGraw-Hill, 2005.
[29] W. H. McAdams, Heat transmission, New York: McGraw-Hill, 1954.
[30] C. T. Chou and C. Y. Chen, "Carbon dioxide recovery by vacuum swing adsorption," Sep. Purif. Technol., vol. 39, pp. 51-65, 2004.
[31] D. Ferreira, P. Barcia, R. D. Whitley and A. Mendes, "Single-stage vacuum pressure swing adsorption for producing high-purity oxygen from air," Ind. Eng. Chem. Res., vol. 54(39), pp. 9591-9604, 2015.
[32] H. Verelat, and G. V. Baron, "Adsorption of Oxygen, Nitrogen, and Argon on 5A Molecular Sieve," J. Chem. Eng. Data, vol. 30(1), pp. 66-70, 1985.
[33] R. T. Yang, Adsorbents: fundamentals and applications, New York: John Wiley & Sons, Inc., 2003.
[34] D. W. Breck, Zeolite Molecular Sieves, New York: John Wiley & Sons, Inc., 1974.
[35] H. Boniface, Separation of argon from air using Zeolites, Frederiction: University of New Brunswick, 1983.
[36] M. M. Hassan, N. S. Raghvan and D. M. Ruthven, "Pressure swing air separation on a carbon molecular sieve—II. Investigation of a modified cycle with pressure equalization and no purge," Chem. Eng. Sci., vol. 42, pp. 2037-2043, 1987.
指導教授 周正堂 楊閎舜 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明