博碩士論文 104324050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.145.130.31
姓名 楊凱鈞(Kai-Chun Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 噴霧熱裂解法製備Zn-doped n-type CuInS2 薄膜及其光電化學性質分析
(Photoelectrochemical performance of Zn-doped n-type CuInS2 thin film prepared by spray pyrolysis method)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用噴塗法,改變不同[Cu]/[In]比例之前驅物濃度,在S 充
足的情況下,沉積在ITO 導電玻璃上,之後經由熱處理500 oC 製備
出n-type CuInS2 薄膜,並且摻雜不同濃度之Zn,希望能提升光電流
表現及調整能階位置來做為p-n junction 能階設計的材料。結構分析
顯示為正方晶系黃銅礦結構的CuInS2,且隨著Cu 的量增加,結晶性
越高,另外無雜相的生成。在紫外光可見光波段,吸收係數大約在104
~ 105 之間,是很理想的光吸收材料,而各比例之能隙值變化不大,大
約介於1.5 ~ 1.55 eV 之間。而光電化學性質中,在電壓= 1.23 V vs.
RHE 時,電解質為犧牲試劑的情況下,n 型光電流表現能達到2.24
mA/cm2。n-type CuInS2 摻雜Zn 後,由XRD 觀察結晶相並沒有改變,
也無雜相生成。在光電流表現上,沒有達到提升光電流的效果。由UVvis
分析,隨著Zn 摻雜量的上升,能隙值有稍微變大的趨勢,不過能
隙值都位在1.5~1.6 eV 之間。摻雜Zn 後光電流表現並沒有下降特別
多,可以利用此特性,我們會進一步量測能階位置來判斷摻雜n-type
CuInS2 及Zn 之n-type CuInS2 是否能做為p-n junction 能階設計的材
料之一。
摘要(英) n-type CuInS2 thin films were fabricated with different [Cu]/[In] ratio
in precursor by spray pyrolysis method on a transparent indium-doped tin
oxide (ITO) substrate followed by calcination in the Ar at 500 oC. Further
we investigated the structural and optical properties of Zn-doped n-type
CuInS2. As the XRD patterns, shows the chalcopyrite CuInS2 structure
with the increase of the amount of Cu, the higher the crystallinity of CuInS2.
The optical study show the absorption coefficient (α) in the UV-visible
region is found to be in the order of 104~105 cm-1 which is the optimum
value for an efficient absorber. The synthesized n-type CuInS2 thin film has
an optical bandgap of 1.5~1.55 eV. CuInS2 thin film yielded a photocurrent
density of 2.24 mA cm-2 at 1.23 V vs. RHE in 0.25 M Na2S and 0.35 M
Na2SO3 under 300 W xenon lamp. Zn-doped CuInS2 has the same optical
bandgap of 1.5~1.6 eV as the n-type CuInS2. Zn-doped CuInS2 didn’t
facilitate photocurrent density, but photocurrent density didn’t drop too
much as well. For this characteristic, we will determine energy band
position of n-type CuInS2 and Zn-doped CuInS2 to be band position design
of the p-n junction material.
關鍵字(中) ★ 薄膜
★ 噴霧熱裂解法
★ 光電化學
關鍵字(英) ★ CuInS2
論文目次 目錄
摘要 I
致謝 III
目錄 IV
圖目錄 VII
表目錄 X

一、緒論 1
1-1 前言 1
1-2 光觸媒分解水發展 2
1-3 研究動機 4
二、文獻回顧 6
2-1 半導體光觸媒分解水 6
2-1-1 半導體能帶 6
2-1-2 光觸媒分解水產氫原理 9
2-2 光觸媒材料 11
2-3 CuInS2 光觸媒 13
2-3-1 CuInS2 化學結構組成與電性關係 13
2-3-2 n-type CuInS2 16
2-3-3 元素摻雜CuInS2 18
2-4 噴霧熱裂解法製備CuInS2 20

三、實驗方法 22
3-1 實驗藥品 22
3-2 實驗儀器與分析儀器 24
3-3 實驗步驟 26
3-3-1 基材清洗 27
3-3-2 製備CuInS2 薄膜 28
3-3-3 製備摻雜Zn 之CuInS2 薄膜 28
3-3-4 光電化學量測 30

四、結果與討論 33
4-1 n-type CuInS2 33
4-1-1 n-type CuInS2:X 光繞射分析 (X-ray diffraction) 33
4-1-2 n-type CuInS2:拉曼光譜學(Raman spectroscopy) 35
4-1-3 n-type CuInS2:電子掃描顯微鏡 (Scanning Electron
Microscope)分析 37
4-1-4 n-type CuInS2:紫外光可見光光譜儀(UV-Visible
Spectrophotometer) 40
4-1-5 n-type CuInS2:光電化學量測 44
4-2 Zn-doped n-type CuInS2 46
4-2-1 Zn-doped n-type CuInS2:X 光繞射分析 (X-ray diffraction)
46
4-2-2 Zn-doped n-type CuInS2:拉曼光譜學(Raman spectroscopy)
48
4-2-3 Zn-doped n-type CuInS2:紫外光可見光光譜儀(UV-Visible
Spectrophotometer) 49
4-2-4 Zn-doped n-type CuInS2:光電化學量測 52
4-3 Mott-Schottky 測量 54

五、結論與未來展望 56
參考文獻 57
附錄 66
參考文獻 [1] S. Dutta, ”A review on production, storage of hydrogen and its
utilization as an energy resource,” Journal of Industrial and
Engineering Chemistry, vol. 20, pp. 1148-1156, 2014.
[2] B. Parida, S. Iniyan, and R. Goic, ”A review of solar photovoltaic
technologies,” Renewable and Sustainable Energy Reviews, vol.
15, pp. 1625-1636, 2011.
[3] C. Zamfirescu, I. Dincer, G. Naterer, and R. Banica, ”Quantum
efficiency modeling and system scaling-up analysis of water
splitting with Cd1− xZnxS solid-solution photocatalyst,” Chemical
Engineering Science, vol. 97, pp. 235-255, 2013.
[4] A. Fujishima and K. Honda, ”Electrochemical photolysis of water
at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972.
[5] M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E.
Stanton, and N. S. Lewis, ”Principles and Applications of
Semiconductor Photoelectrochemistry,” in Progress in Inorganic
Chemistry, ed: John Wiley & Sons, Inc., 2007, pp. 21-144.
[6] T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L.
Suib, ”Photocatalytic Water Splitting—The Untamed Dream: A
Review of Recent Advances,” Molecules, vol. 21, p. 900, 2016.
[7] T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, ”Photoelectrochemical
hydrogen generation from water using solar
energy. Materials-related aspects,” International Journal of
Hydrogen Energy, vol. 27, pp. 991-1022, 2002.
58
[8] K. Rajeshwar, ”Fundamentals of semiconductor electrochemistry
and photoelectrochemistry,” Encyclopedia of Electrochemistry,
2007.
[9] H. M. Chen, C. K. Chen, R.-S. Liu, L. Zhang, J. Zhang, and D. P.
Wilkinson, ”Nano-architecture and material designs for water
splitting photoelectrodes,” Chemical Society Reviews, vol. 41, pp.
5654-5671, 2012.
[10] J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, and S. Ardo,
”Experimental demonstrations of spontaneous, solar-driven
photoelectrochemical water splitting,” Energy & Environmental
Science, vol. 8, pp. 2811-2824, 2015.
[11] M. D. Bhatt and J. S. Lee, ”Recent theoretical progress in the
development of photoanode materials for solar water splitting
photoelectrochemical cells,” Journal of Materials Chemistry A,
vol. 3, pp. 10632-10659, 2015.
[12] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi,
E. A. Santori, et al., ”Solar water splitting cells,” Chemical
Reviews, vol. 110, pp. 6446-6473, 2010.
[13] K. Sivula, F. Le Formal, and M. Grätzel, ”Solar water splitting:
progress using hematite (α‐Fe2O3) photoelectrodes,”
ChemSusChem, vol. 4, pp. 432-449, 2011.
[14] C. X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D. A. Wheeler,
J. Z. Zhang, B. R. Antoun and S. S. Mao, ”A perspective on solardriven
water splitting with all-oxide hetero-nanostructures,” Energy
& Environmental Science, vol. 4, pp. 3889-3899, 2011.
59
[15] R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and
M. S. Wrighton, ”Improvement of photoelectrochemical
hydrogen generation by surface modification of p-type silicon
semiconductor photocatrodes,” Journal of the American Chemical
Society, vol. 104, pp. 467-482, 1982.
[16] A. Heller and R. G. Vadimsky, ”Efficient solar to chemical
conversion: 12% efficient photoassisted electrolysis in the [p-type
InP (Ru)]/HCl-KCl/Pt (Rh) cell,” Physical Review Letters, vol. 46,
p. 1153, 1981.
[17] O. Khaselev and J. A. Turner, ”Electrochemical Stability of p‐
GaInP2 in Aqueous Electrolytes Toward Photoelectrochemical
Water Splitting,” Journal of the Electrochemical Society, vol. 145,
pp. 3335-3339, 1998.
[18] J. Sun, C. Liu, and P. Yang, ”Surfactant-free, large-scale, solution–
liquid–solid growth of gallium phosphide nanowires and their use
for visible-light-driven hydrogen production from water
reduction,” Journal of the American Chemical Society, vol. 133,
pp. 19306-19309, 2011.
[19] C. A. Grimes, O. K. Varghese, and S. Ranjan, Hydrogen generation
by water splitting: Springer, 2008.
[20] E. A. Santori, J. R. Maiolo III, M. J. Bierman, N. C. Strandwitz, M.
D. Kelzenberg, B. S. Brunschwig, et al., ”Photoanodic behavior of
vapor-liquid-solid–grown, lightly doped, crystalline Si microwire
arrays,” Energy & Environmental Science, vol. 5, pp. 6867-6871,
2012.
60
[21] J. Luo, S. D. Tilley, L. Steier, M. Schreier, M. T. Mayer, H. J. Fan
and M. Grätzel, ”Solution transformation of Cu2O into CuInS2 for
solar water splitting,” Nano Letters, vol. 15, pp. 1395-1402, 2015.
[22] B. J. Trześniewski and W. A. Smith, ”Photocharged BiVO4
photoanodes for improved solar water splitting,” Journal of
Materials Chemistry A, vol. 4, pp. 2919-2926, 2016.
[23] H. Liu, R. Nakamura, and Y. Nakato, ”Bismuth–Copper Vanadate
BiCu2VO6 as a Novel Photocatalyst for Efficient Visible‐Light‐
Driven Oxygen Evolution,” ChemPhysChem, vol. 6, pp. 2499-
2502, 2005.
[24] M. Higashi, K. Domen, and R. Abe, ”Highly stable water splitting
on oxynitride TaON photoanode system under visible light
irradiation,” Journal of the American Chemical Society, vol. 134,
pp. 6968-6971, 2012.
[25] D. Yokoyama, H. Hashiguchi, K. Maeda, T. Minegishi, T. Takata,
R. Abe, J. Kubota and K. Domen, ”Ta3N5 photoanodes for water
splitting prepared by sputtering,” Thin Solid Films, vol. 519, pp.
2087-2092, 2011.
[26] Y. Tang, N. Rong, F. Liu, M. Chu, H. Dong, Y. Zhang and P. Xiao,
”Enhancement of the photoelectrochemical performance of CuWO4
films for water splitting by hydrogen treatment,” Applied Surface
Science, vol. 361, pp. 133-140, 2016.
[27] M. Grätzel, ”Photoelectrochemical cells,” Nature, vol. 414, pp.
338-344, 2001.
[28] M. Fujita, ”Silicon photonics: Nanocavity brightens silicon,”
61
Nature Photonics, vol. 7, pp. 264-265, 2013.
[29] J. Binsma, L. Giling, and J. Bloem, ”Luminescence of CuInS2: I.
The broad band emission and its dependence on the defect
chemistry,” Journal of Luminescence, vol. 27, pp. 35-53, 1982.
[30] B. Tell, J. Shay, and H. Kasper, ”Room‐Temperature Electrical
Properties of Ten I‐III‐VI2 Semiconductors,” Journal of Applied
Physics, vol. 43, pp. 2469-2470, 1972.
[31] Y. Li, Y. Wang, R. Tang, X. Wang, P. Zhu, X. Zhao and C. Gao,
”Structural phase transition and electrical transport properties of
CuInS2 nanocrystals under high pressure,” The Journal of Physical
Chemistry C, vol. 119, pp. 2963-2968, 2015.
[32] H. Y. Ueng and H. Hwang, ”The defect structure of CuInS2. Part I:
Intrinsic defects,” Journal of Physics and Chemistry of Solids, vol.
50, pp. 1297-1305, 1989.
[33] B. Tell and F. Thiel, ”Photovoltaic properties of p‐n junctions in
CuInS2,” Journal of Applied Physics, vol. 50, pp. 5045-5046, 1979.
[34] K. Ito, N. Matsumoto, T. Horiuchi, K. Ichino, H. Shimoyama, T.
Ohashi, et al., ”Theoretical model and device performance of
CuInS2 thin film solar cell,” Japanese Journal of Applied Physics,
vol. 39, p. 126, 2000.
[35] E. Arici, N. S. Sariciftci, and D. Meissner, ”Hybrid solar cells
based on nanoparticles of CuInS2 in organic matrices,” Advanced
Functional Materials, vol. 13, pp. 165-171, 2003.
[36] Y. Tang, Y. H. Ng, J.-H. Yun, and R. Amal, ”Fabrication of a
62
CuInS2 photoelectrode using a single-step electrodeposition with
controlled calcination atmosphere,” RSC Advances, vol. 4, pp.
3278-3283, 2014.
[37] Y. Choi, M. Beak, and K. Yong, ”Solar-driven hydrogen evolution
using a CuInS2/CdS/ZnO heterostructure nanowire array as an
efficient photoanode,” Nanoscale, vol. 6, pp. 8914-8918, 2014.
[38] J. Chen, D. Yang, D. Song, J. Jiang, A. Ma, M. Z. Hu and C. Ni,
”Recent progress in enhancing solar-to-hydrogen efficiency,”
Journal of Power Sources, vol. 280, pp. 649-666, 2015.
[39] H. Ueng and H. Hwang, ”Defect identification in undoped and
phosphorus‐doped CuInS2 based on deviations from ideal chemical
formula,” Journal of Applied Physics, vol. 62, pp. 434-439, 1987.
[40] H. Ueng and H. Hwang, ”The defect structure of CuInS2. Part III:
Extrinsic impurities,” Journal of Physics and Chemistry of Solids,
vol. 51, pp. 11-18, 1990.
[41] T. Yamamoto, I. V. Luck, and R. Scheer, ”Materials design of ntype
CuInS2 thin films using Zn or Cd species,” Applied surface
science, vol. 159, pp. 350-354, 2000.
[42] M. Zribi, M. Kanzari, and B. Rezig, ”Effects of Na incorporation in
CuInS2 thin films,” The European Physical Journal Applied
Physics, vol. 29, pp. 203-207, 2005.
[43] M. Zribi, M. Kanzari, and B. Rezig, ”Optical constants of Nadoped
CuInS2 thin films,” Materials Letters, vol. 60, pp. 98-103,
2006.
[44] M. Zribi, M. B. Rabeh, R. Brini, M. Kanzari, and B. Rezig,
63
”Influence of Sn incorporation on the properties of CuInS2 thin
films grown by vacuum evaporation method,” Thin Solid Films,
vol. 511, pp. 125-129, 2006.
[45] S. Seeger and K. Ellmer, ”Reactive magnetron sputtering of CuInS2
absorbers for thin film solar cells: problems and prospects,” Thin
Solid Films, vol. 517, pp. 3143-3147, 2009.
[46] G.-T. Pan, M.-H. Lai, R.-C. Juang, T.-W. Chung, and T. C.-K.
Yang, ”The preparation and characterization of Ga-doped CuInS2
films with chemical bath deposition,” Solar Energy Materials and
Solar Cells, vol. 94, pp. 1790-1796, 2010.
[47] C. Broussillou, M. Andrieux, M. Herbst-Ghysel, M. Jeandin, J.
Jaime-Ferrer, S. Bodnar, et al., ”Sulfurization of Cu–In
electrodeposited precursors for CuInS2-based solar cells,” Solar
Energy Materials and Solar Cells, vol. 95, pp. S13-S17, 2011.
[48] W. Septina, T. Harada, Y. Nose, and S. Ikeda, ”Investigation of the
electric structures of heterointerfaces in Pt-and In2S3-modified
CuInS2 photocathodes used for sunlight-induced hydrogen
evolution,” ACS Applied Materials & Interfaces, vol. 7, pp. 16086-
16092, 2015.
[49] H. Kumagai, T. Minegishi, N. Sato, T. Yamada, J. Kubota, and K.
Domen, ”Efficient solar hydrogen production from neutral
electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes,”
Journal of Materials Chemistry A, vol. 3, pp. 8300-8307, 2015.
[50] S. Peng, F. Cheng, J. Liang, Z. Tao, and J. Chen, ”Facile solutioncontrolled
growth of CuInS2 thin films on FTO and TiO2/FTO glass
64
substrates for photovoltaic application,” Journal of Alloys and
Compounds, vol. 481, pp. 786-791, 2009.
[51] M. Nanu, L. Reijnen, B. Meester, J. Schoonman, and A. Goossens,
”CuInS2 thin films deposited by ALD,” Chemical Vapor
Deposition, vol. 10, pp. 45-49, 2004.
[52] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner,
W. Wischmann and M. Powalla, ”New world record efficiency for
Cu(In,Ga)Se2 thin‐film solar cells beyond 20%,” Progress in
Photovoltaics: Research and Applications, vol. 19, pp. 894-897,
2011.
[53] A. Katerski, A. Mere, V. Kazlauskiene, J. Miskinis, A. Saar, L.
Matisen, A. Kikas and M. Krunks, ”Surface analysis of spray
deposited copper indium disulfide films,” Thin Solid Films, vol.
516, pp. 7110-7115, 2008.
[54] I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja and
A. Goossens, ”Crystal quality studies of CuInS2 films prepared by
spray pyrolysis,” Thin Solid Films, vol. 480, pp. 82-86, 2005.
[55] Y. Cai, J. C. Ho, S. K. Batabyal, W. Liu, Y. Sun, S. G. Mhaisalkar,
et al., ”Nanoparticle-induced grain growth of carbon-free solutionprocessed
CuIn (S, Se)2 solar cell with 6% efficiency,” ACS applied
materials & interfaces, vol. 5, pp. 1533-1537, 2013.
[56] M. Ortega-López and A. Morales-Acevedo, ”Characterization of
CuInS2 thin films for solar cells prepared by spray pyrolysis,” Thin
Solid Films, vol. 330, pp. 96-101, 1998.
[57] M. Krunks, V. Mikli, O. Bijakina, H. Rebane, A. Mere, T. Varema
65
and E. Mellikov, ”Composition and structure of CuInS2 films
prepared by spray pyrolysis,” Thin Solid Films, vol. 361, pp. 61-64,
2000.
[58] M. Krunks, O. Bijakina, T. Varema, V. Mikli, and E. Mellikov,
”Structural and optical properties of sprayed CuInS2 films,” Thin
Solid Films, vol. 338, pp. 125-130, 1999.
[59] M. Zouaghi, T. B. Nasrallah, S. Marsillac, J. Bernede, and S.
Belgacem, ”Physico-chemical characterization of spray-deposited
CuInS2 thin films,” Thin Solid Films, vol. 382, pp. 39-46, 2001.
[60] K. Wu and D. Wang, ”Temperature‐dependent Raman investigation
of CuInS2 with mixed phases of chalcopyrite and CuAu,” Physica
Status Solidi (a), vol. 208, pp. 2730-2736, 2011.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2017-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明