博碩士論文 104324051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.226.150.175
姓名 張家綺(Chia-Chi Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討不同流場電解液與不同表面積發泡鎳網作鋅空氣電池負極集電網之電化學性質
(Using Nickel foam of different surface area as anode current collector with different flow field for Zn-based batteries)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用發泡鎳網作為鋅二次電池負極集電網,搭配不同轉速之流場電解質,抑制鋅在充電沉積過程中產生樹枝狀晶的問題,並提升單位面積鋅負載量與循環充放電之效率。實驗採用三極式電化學裝置,參考電極為飽和甘汞電極,電解液為含有飽和氧化鋅(ZnO)的6M氫氧化鉀(KOH)溶液,分別在無轉速、300、450與900 rpm轉速下進行電化學測試。
  Nickel foam在不同電流密度下鍍鋅30分鐘,並使用掃描式電子顯微鏡(SEM)來觀測鋅沉積的樣貌,顯示在高轉速下Nickel foam可以承受更高的電流密度鍍鋅而不產生樹枝狀晶;以循環伏安法測試負極在流場下有較高的氧化峰值,表示搭配流場電解質會有較好的放電表現;以100 mA/cm2電流密度做充放電循環測試,可以發現負極在流場下有較好的循環穩定性,且有較高的庫倫放電效率。
  不同表面積之Nickel foam可藉由電化學沉積法製備,固定電流180mA/cm2,調整電鍍時間15、30、45分鐘與一小時,搭配不同轉速之流場電解液,經由循環伏安法與充放電循環測試後,可以提升鋅的氧化電流值與庫倫效率,也有較好的循環穩定性,其中鍍鎳30分鐘的實驗組有最高的氧化電流與穩定性,有最好電化學表現。
  Nickel foam因為其多孔性結構,具有相當高的比表面積,並搭配流場電解質,可有效利用內部的面積,提升Nickel foam的使用率,進而分散單位面積的電流密度,可以使Nickel foam有更多的空間讓鋅沉積,並且承受更大的鍍鋅電流密度,故Nickel foam作為鋅二次電池負極集電網搭配流場電解質可有利於儲能裝置發展前景。
摘要(英)
Using Ni foam as the current collector with different flow field electrolyte for Zn-based secondary batteries could inhibit dendrite formation and enhance electrochemical performance. In this work, electrochemical analysis was conducted in an alkaline electrolyte composed of 6 M KOH with saturated ZnO and under different flow field, 0 rpm, 300rpm, 450 rpm, 900 rpm respectively. Zn was electrodeposited on Ni foam at different current density for 30 minutes, the SEM images showed that with the flow field electrolyte Ni foam could be applied for higher current density without dendrite formation. According to the results of cyclic voltammetry, the anodic peak with high revolutions per minute, especially for 450 rpm, was larger than without flow field electrolyte. It indicated that Ni foam with flow field electrolyte had a better discharge performance. Constant current density, 100 mA/cm2, was applied for the charge/discharge cyclic test. Ni foam with flow field electrolyte exhibited a better discharge efficiency and superior cycle stability. Ni foam of different surface area has been prepared by an electrodeposition technique. We used a constant current density, 180mA/cm2, and set different parameters of time, 15, 30, 45 minutes and 1 hour for the electrodeposition. Under different flow field, Ni foam of different surface area was determined by cyclic voltammetry and charge/discharge cycle test. The anodic current and cycle stability of Ni foam of different surface area was higher than that of the commercial Ni foam. Because of the high porosity and large specific surface area, the inner area of Ni foam could be fully used with the flow field electrolyte. This effect caused the applied current density was being separated, so the real current density per unit area decreased and the space of Ni foam for Zn deposition increased. Owing to these results, Ni foam used as the current collector with the flow field electrolyte is a good choice for energy storage.
關鍵字(中) ★ 鋅空氣電池
★ 發泡鎳網
★ 電化學
★ 負極
★ 集電網
關鍵字(英) ★ Zinc-Air battery
★ Nickel foam
★ Electrochemistry
★ anode
★ current collector
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xvi
一、 緒論 1
1-1 前言 1
1-2 研究動機 4
二、 文獻回顧 7
2-1 鋅空氣電池的工作原理 7
2-2 鋅空氣電池的發展 10
2-3 鋅空氣電池的負極材料 13
2-4 鋅的電沉積形貌 17
2-5 鋅枝狀晶的抑制 21
2-5-1 電解液添加劑 21
2-5-2 電極改質或添加劑 25
2-5-3 實驗條件控制 28
2-5-4 物理與其他方法 30
2-6 發泡鎳網在儲能產業的應用 33
三、 實驗方法及步驟 36
3-1 實驗藥品與器材 36
3-1-1 實驗藥品 36
3-1-2 實驗儀器與器材 37
3-2 實驗步驟 38
3-2-1 發泡鎳網前處理 38
3-2-2 不同表面積之發泡鎳網製備 39
3-2-3 電化學測試裝置 40
3-2-4 電解質液流系統 41
3-3 材料鑑定分析 41
3-3-1 X光繞射儀分析 (X-ray Diffraction, XRD ) 41
3-3-2 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 41
3-4 電化學分析 42
3-4-1 表面形貌分析 42
3-4-2 枝狀晶生長極限電流 42
3-4-3 循環伏安法 (Cyclic voltammetry, CV) 42
3-4-4 循環穩定性測試 43
四、 結果與討論 44
4-1 材料分析鑑定 44
4-1-1 X光繞射分析 44
4-1-2 鋅沉積樣貌 45
4-2 循環伏安法 48
4-2-1 循環伏安圖 48
4-2-2 庫倫效率 51
4-3 鋅枝狀晶生長之極限電流 53
4-4 循環充放電測試 63
4-4-1 放電曲線圖 63
4-4-2 循環效率 66
4-5 不同表面積之發泡鎳網分析鑑定 67
4-5-1 表面形貌鑑定 67
4-5-2 XRD分析鑑定 69
4-6 不同表面積發泡鎳網之循環伏安測試 71
4-7 不同表面積發泡鎳網之循環充放電測試 76
五、 結論與未來展望 79
參考文獻 81
參考文獻
[1] F. Cheng and J. Chen, ”Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts,” Chemical Society Reviews, vol. 41, pp. 2172-2192, 2012.
[2] Y. Li and H. Dai, ”Recent advances in zinc-air batteries,” Chemical Society Reviews, vol. 43, pp. 5257-5275, Aug 7 2014.
[3] H. Pang, P. Gu, M. Zheng, Q. Zhao, X. Xiao, and H. Xue, ”Rechargeable zinc-air battery: a promising way to green energy,” Journal of Materials Chemistry A, 2017.
[4] X. Zhang, ”Zinc electrodes: overview,” Encyclopeida of electrochemical power sources, vol. 5, pp. 454-468, 2009.
[5] R. E. Durkot, L. Lin, and P. B. Harris, ”Zinc electrode particle form,” ed: Google Patents, 2001.
[6] A. Oyama, T. Odahara, S. Fuchino, M. Shinoda, and H. Shimomura, ”Process for producing zinc or zinc alloy powder for battery,” ed: Google Patents, 2004.
[7] Y. Cheng, H. Zhang, Q. Lai, X. Li, Q. Zheng, X. Xi,, ”Effect of temperature on the performances and in situ polarization analysis of zinc–nickel single flow batteries,” Journal of Power Sources, vol. 249, pp. 435-439, 2014.
[8] X. G. Zhang, ”Fibrous zinc anodes for high power batteries,” Journal of Power Sources, vol. 163, pp. 591-597, Dec 7 2006.
[9] Y. Ito, X. Wei, D. Desai, D. Steingart, and S. Banerjee, ”An indicator of zinc morphology transition in flowing alkaline electrolyte,” Journal of Power Sources, vol. 211, pp. 119-128, 2012.
[10] R. Wang, D. Kirk, and G. Zhang, ”Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions,” Journal of The Electrochemical Society, vol. 153, pp. C357-C364, 2006.
[11] O. Aaboubi, J. Douglade, X. Abenaqui, R. Boumedmed, and J. VonHoff, ”Influence of tartaric acid on zinc electrodeposition from sulphate bath,” Electrochimica Acta, vol. 56, pp. 7885-7889, 2011.
[12] S. J. Banik and R. Akolkar, ”Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive,” Journal of The Electrochemical Society, vol. 160, pp. D519-D523, 2013.
[13] S. J. Banik and R. Akolkar, ”Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive,” Electrochimica Acta, vol. 179, pp. 475-481, 2015.
[14] X. Zhu, H. Yang, X. Ai, J. Yu, and Y. Cao, ”Structural and electrochemical characterization of mechanochemically synthesized calcium zincate as rechargeable anodic materials,” Journal of applied electrochemistry, vol. 33, pp. 607-612, 2003.
[15] J. Vatsalarani, D. C. Trivedi, K. Ragavendran, and P. C. Warrier, ”Effect of polyaniline coating on ”shape change” phenomenon of porous zinc electrode,” Journal of the Electrochemical Society, vol. 152, pp. A1974-A1978, 2005 2005.
[16] K. Miyazaki, Y. S. Lee, T. Fukutsuka, and T. Abe, ”Suppression of Dendrite Formation of Zinc Electrodes by the Modification of Anion-Exchange Ionomer,” Electrochemistry, vol. 80, pp. 725-727, Oct 2012.
[17] S. Arouete, K. Blurton, and H. Oswin, ”Controlled current deposition of zinc from alkaline solution,” Journal of The Electrochemical Society, vol. 116, pp. 166-169, 1969.
[18] A. Gavrilović-Wohlmuther, A. Laskos, C. Zelger, B. Gollas, and A. H. Whitehead, ”Effects of Electrolyte Concentration, Temperature, Flow Velocity and Current Density on Zn Deposit Morphology,” J. Energy Power Eng., vol. 9, pp. 1019-1028, 2015.
[19] J. F. Parker, E. S. Nelson, M. D. Wattendorf, C. N. Chervin, J. W. Long, and D. R. Rolison, ”Retaining the 3D Framework of Zinc Sponge Anodes upon Deep Discharge in Zn-Air Cells,” Acs Applied Materials & Interfaces, vol. 6, pp. 19471-19476, Nov 26 2014.
[20] J. F. Parker, C. N. Chervin, E. S. Nelson, D. R. Rolison, and J. W. Long, ”Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling,” Energy & Environmental Science, vol. 7, pp. 1117-1124, Mar 2014.
[21] S. Higashi, S. W. Lee, J. S. Lee, K. Takechi, and Y. Cui, ”Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration,” Nature communications, vol. 7, pp. 1-6 , 2016.
[22] Q. Sa and Y. Wang, ”Ni foam as the current collector for high capacity C–Si composite electrode,” Journal of Power Sources, vol. 208, pp. 46-51, 2012.
[23] Y. Cheng, H. Zhang, Q. Lai, X. Li, D. Shi, and L. Zhang, ”A high power density single flow zinc–nickel battery with three-dimensional porous negative electrode,” Journal of Power Sources, vol. 241, pp. 196-202, 2013.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2017-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明