博碩士論文 104324064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.239.172.52
姓名 王逸軒(Yi-Hsueh Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究
(Using neutralized-DNA on silicon nanowire field-effect transistor for microRNA detection)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性
★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究★ 三團聯共聚物及鎂離子對微脂粒物理穩定性之影響及其機制探討
★ 微卡計在固液吸附機制的研究-嵌印高分子及離子交換樹脂在近等電點時的吸附機制★ 微卡計於液膜交互作用力量測之應用----微脂粒系統穩定度之探討
★ Ribonuclease A 於逆微胞系統中的復性及其界面現象之研究★ 三團聯聚合物(PF-127)和磷脂質間交互作用力量測和微脂粒穩定度之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來各種生物標記物( biomarkers )如DNA、RNA、蛋白質等生物分子的檢測方法被發展與推廣並期待與臨床上診斷跟治療結合。在眾多檢測平台中由於奈米線場效電晶體具備高靈敏度、快速反應、高專一性等優點,加上現行傳統的生物辨識技術如 qPCR 及微陣列檢測基因序列,都須要加入螢光分子來標記這些生物分子,而奈米線場效電晶體是直接量測電訊號變化,能免去螢光標定造成的不便,因此是極具發展潛力的檢測平台。目前有相當多研究團隊致力於運用奈米線場效電晶體檢測與重大疾病相關之基因序列,然而在基因檢測上還是受到核酸雜交溶液中鹽離子濃度決定的德拜長度(debye length)限制,影響了檢測的靈敏度。本研究中我們使用不帶電磷酸根甲基化 DNA(nDNA)探針來提升場效電晶體對miRNA的檢測效果。不帶電磷酸根甲基化 DNA 探針與目標核酸序列之間靜電排斥力較小,因此使不帶電磷酸甲基化 DNA 探針與目標核酸序列雜交時在低鹽濃度下,比傳統DNA 探針更容易雜交形成雙股螺旋結構。我們嘗試在不同鹽離子濃度下比較nDNA探針及DNA探針對miRNA的檢測能力,並建立檢量線及檢測敏感度(sensitivity)的量測,從實驗結果可以看到,檢測同樣濃度的miRNA,nDNA探針的電訊號變化量較DNA探針更大,在低鹽濃度下進行檢測兩種探針的電訊號變化量差異更為明顯。nDNA探針對miRNA的檢測,於10mM鹽濃度溶液中實驗最低檢測極限可以達到0.1fM。而且針對不同預期含量的檢測標的物,也能用nDNA探針搭配不同的鹽濃度溶液使檢測能有更佳的效果。若標的物只有fM等級,可以在10mM鹽濃度溶液中進行量測,確保能有最好的檢測靈敏度。若標的物預期含量較高,濃度約在10fM到1pM(元件最低定量極限為10fM)間之標的物,可以選擇nDNA探針搭配50mM BTP緩衝液進行檢測,得到的數據能進行較精確的定量分析。
摘要(英) In recent years, many biomarkers detection methods have been studied and look forward to combine with clinical diagnosis and treatments. Due to it’s high sensitivity, fast response and specificity, silicon nanowire field effect transistor(SiNWFET) has been a powerful tool for gene sensing. Other conventional decetion methods like microarray or qPCR need to label fluorescence marker on biomolecules. SiNWFET is a label-free detection method, because the signal is come from electricity changing. Lots of group have been studying on the gene sequence related with cancer. While there are still some difficulties in this method, especially for DNA and microRNA detecting. The sensitivity of SiNWFET is limited by debye length, which is depending on the sensing buffer salt concentration. In this study, we focus on using neutralized phosphate-methylated DNA(nDNA) to enhance SiNWFET performance. Because of the lower electrostatic repulsion between nDNA and target sequence, nDNA can form duplex more easily in low salt concentration buffer. We sensing miR-21 sequence in different salt concentration buffer, set up the calibration curve. We also figure out the limit of detection(LOD) and limit of quantitation(LOQ). Base on the experiment results, we found that nDNA probe has larger signal change compare to DNA probe, especially sensing in low salt concentration buffer. The device’s limit of detection can reach to 0.1fM in 10mM BTP. We also found that by using nDNA probe with different salt concentration sensing buffer can improve the device’s performance. If the sample target concentration only has fM level, we can use 10mM BTP sensing buffer to perform the highest sensitivity; if the sample target concentration is around 10fM to 1pM (our device’s limit of quantitation is 10fM), we can use 50mM salt concentration sensing buffer to get higher resolution datas for quantitative analysis.
關鍵字(中) ★ 矽奈米線場效電晶體
★ 微核醣核酸
關鍵字(英) ★ silicon nano-wire field effect transistor
★ micro-RNA
論文目次 中文摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
第二章 文獻回顧 4
2.1 核酸簡介 4
2.1.1 去氧核醣核酸 4
2.1.2 核醣核酸 7
2.1.3 微小核醣核酸 8
2.2 核酸類似物 9
2.2.1 肽核酸 9
2.2.2 鎖核酸 10
2.2.3 磷酸根甲基化去氧核醣核酸 12
2.3 場效電晶體生物感測器 15
2.4 德拜長度 22
2.4.1 Debye length 與溶液鹽離子濃度的關係 22
2.4.2 鹽濃度與 Debye length 於場效電晶體量測的影響 23
2.5 探針密度 25
第三章 實驗藥品、儀器設備與方法 27
3.1 實驗藥品 27
3.2 儀器設備 28
3.3 nDNA序列合成 29
3.4 nDNA水解純化 30
3.5 晶片表面改質 31
3.5.1 晶片表面光阻去除及氧電漿處理 31
3.5.2 修飾APTES (3-Aminopropyltriethoxysilane) 31
3.5.3 修飾GA(glutaraldehyde) 32
3.5.4 探針固定化 32
3.6 FET電性測量 34
第四章 結果與討論 35
4.1 鹽濃度對於 DNA-miRNA 雜交的影響 35
4.2 不同探針檢測miRNA的影響 40
4.3 不同miRNA樣品濃度檢測 44
4.4 極低濃度miRNA樣品檢測 49
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 54
第六章 參考文獻 55


參考文獻 1.Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M. D., Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Research 2006, 34 (2), 564-574.
2.Dahm, R., Friedrich Miescher and the discovery of DNA. Dev Biol 2005, 278 (2), 274-88.
3.LEVENE, P. A., the structure of yeast nucleic acid: IV. AMMONIA HYDROLYSIS. Biol. Chem 1919, 40, 415-24.
4.Watson, J. D.; Crick, F. H., Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171 (4356), 737-8.
5.Wing, R.; Drew, H.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R. E., Crystal structure analysis of a complete turn of B-DNA. Nature 1980, 287 (5784), 755-8.
6.Pabo, C. O.; Sauer, R. T., Protein-DNA Recognition. Annual Review of Biochemistry 1984, 53 (1), 293-321.
7.Leslie, A. G. W.; Arnott, S.; Chandrasekaran, R.; Ratliff, R. L., Polymorphism of DNA double helices. Journal of Molecular Biology 1980, 143 (1), 49-72.
8.Xiong, Y.; Sundaralingam, M., Crystal structure of a DNA·RNA hybrid duplex with a polypurine RNA r(gaagaagag) and a complementary polypyrimidine DNA d(CTCTTCTTC). Nucleic Acids Research 2000, 28 (10), 2171-2176.
9.Milman, G.; Langridge, R.; Chamberlin, M., The structure of a DNA-RNA hybrid. Proceedings of the National Academy of Sciences 1967, 57 (6), 1804-1810.
10.Wang, A. H. J.; Quigley, G. J.; Kolpak, F. J.; Crawford, J. L.; van Boom, J. H.; van der Marel, G.; Rich, A., Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 1979, 282, 680.
11.Fohrer, J.; Hennig, M.; Carlomagno, T., Influence of the 2′-Hydroxyl Group Conformation on the Stability of A-form Helices in RNA. Journal of Molecular Biology 2006, 356 (2), 280-287.
12.Ambros, V., The functions of animal microRNAs. Nature 2004, 431, 350.
13.Bartel, D. P., MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116 (2), 281-297.
14.Lee, R. C.; Feinbaum, R. L.; Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75 (5), 843-854.
15.Bartel, D. P., MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136 (2), 215-233.
16.Zhang, J.-g.; Wang, J.-j.; Zhao, F.; Liu, Q.; Jiang, K.; Yang, G.-h., MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clinica Chimica Acta 2010, 411 (11), 846-852.
17.Krichevsky, A. M.; Gabriely, G., miR-21: a small multi-faceted RNA. J Cell Mol Med 2009, 13 (1), 39-53.
18.Zhang, Z.; Li, Z.; Gao, C.; Chen, P.; Chen, J.; Liu, W.; Xiao, S.; Lu, H., miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Laboratory Investigation 2008, 88, 1358-1366.
19.Egholm, M.; Buchardt, O.; Nielsen, P. E.; Berg, R. H., Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. Journal of the American Chemical Society 1992, 114 (5), 1895-1897.
20.Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim, S. K.; Norden, B.; Nielsen, P. E., PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 1993, 365, 566.
21.Tomac, S.; Sarkar, M.; Ratilainen, T.; Wittung, P.; Nielsen, P. E.; Nordén, B.; Gräslund, A., Ionic Effects on the Stability and Conformation of Peptide Nucleic Acid Complexes. Journal of the American Chemical Society 1996, 118 (24), 5544-5552.
22.Koppelhus, U.; Nielsen, P. E., Cellular delivery of peptide nucleic acid (PNA). Advanced Drug Delivery Reviews 2003, 55 (2), 267-280.
23.Hyrup, B.; Nielsen, P. E., Peptide Nucleic Acids (PNA): Synthesis, properties and potential applications. Bioorganic & Medicinal Chemistry 1996, 4 (1), 5-23.
24.Gao, Z.; Agarwal, A.; Trigg, A. D.; Singh, N.; Fang, C.; Tung, C.-H.; Fan, Y.; Buddharaju, K. D.; Kong, J., Silicon Nanowire Arrays for Label-Free Detection of DNA. Analytical Chemistry 2007, 79 (9), 3291-3297.
25.Zhang, G.-J.; Chua, J. H.; Chee, R.-E.; Agarwal, A.; Wong, S. M., Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosensors and Bioelectronics 2009, 24 (8), 2504-2508.
26.Obika, S.; Nanbu, D.; Hari, Y.; Morio, K.-i.; In, Y.; Ishida, T.; Imanishi, T., Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C3,-endo sugar puckering. Tetrahedron Letters 1997, 38 (50), 8735-8738.
27.Bondensgaard, K.; Petersen, M.; Singh, S. K.; Rajwanshi, V. K.; Kumar, R.; Wengel, J.; Jacobsen, J. P., Structural Studies of LNA:RNA Duplexes by NMR: Conformations and Implications for RNase H Activity. Chemistry – A European Journal 2000, 6 (15), 2687-2695.
28.Koshkin, A. A.; Nielsen, P.; Meldgaard, M.; Rajwanshi, V. K.; Singh, S. K.; Wengel, J., LNA (Locked Nucleic Acid):  An RNA Mimic Forming Exceedingly Stable LNA:LNA Duplexes. Journal of the American Chemical Society 1998, 120 (50), 13252-13253.
29.Kaur, H.; Wengel, J.; Maiti, S., Thermodynamics of DNA−RNA Heteroduplex Formation:  Effects of Locked Nucleic Acid Nucleotides Incorporated into the DNA Strand. Biochemistry 2008, 47 (4), 1218-1227.
30.Ballantyne, K. N.; van Oorschot, R. A. H.; Mitchell, R. J., Locked nucleic acids in PCR primers increase sensitivity and performance. Genomics 2008, 91 (3), 301-305.
31.Levin, J. D.; Fiala, D.; Samala, M. F.; Kahn, J. D.; Peterson, R. J., Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Research 2006, 34 (20), e142-e142.
32.Obernosterer, G.; Martinez, J.; Alenius, M., Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nature Protocols 2007, 2, 1508.
33.Yamamichi, N.; Shimomura, R.; Inada, K.-i.; Sakurai, K.; Haraguchi, T.; Ozaki, Y.; Fujita, S.; Mizutani, T.; Furukawa, C.; Fujishiro, M.; Ichinose, M.; Shiogama, K.; Tsutsumi, Y.; Omata, M.; Iba, H., Locked Nucleic Acid In situ Hybridization Analysis of miR-21 Expression during Colorectal Cancer Development. Clinical Cancer Research 2009, 15 (12), 4009-4016.
34.Koole, L. H.; Moody, H. M.; Broeders, N. L. H. L.; Quaedflieg, P. J. L. M.; Kuijpers, W. H. A.; Van Genderen, M. H. P.; Coenen, A. J. J. M.; Van der Wal, S.; Buck, H. M., Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry 1989, 54 (7), 1657-1664.
35.Kuijpers, W. H.; Huskens, J.; Koole, L. H.; van Boeckel, C. A., Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic Acids Research 1990, 18 (17), 5197-5205.
36.van Genderen, M. H. P.; Koole, L. H.; Buck, H. M., Hybridization of phosphate-methylated DNA and natural oligonucleotides. Implications for protein-induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas 1989, 108 (1), 28-35.
37.Coenen, A. J.; Henckens, L. H.; Mengerink, Y.; van der Wal, S.; Quaedflieg, P. J.; Koole, L. H.; Meijer, E. M., Optimization of the separation of the Rp and Sp diastereomers of phosphate-methylated DNA and RNA dinucleotides. J Chromatogr 1992, 596 (1), 59-66.
38.Miller, P. S.; Fang, K. N.; Kondo, N. S.; Ts′o, P. O., Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. J Am Chem Soc 1971, 93 (24), 6657-65.
39.Miller, P. S.; Braiterma, L. T.; Ts′o, P. O., Effects of a trinucleotide ethyl phosphotriester, Gmp (Et) Gmp (Et) U, on mammalian cells in culture. Biochemistry. mammalian cells in culture. Biochemistry 1977, 16 (9), 1988-1996.
40.Koole, L. H.; van Genderen, M. H. P.; Reiniers, R. G.; Buck, H. M., Enhanced stability of a Watson & Crick DNA duplex structure by methylation of the phosphate groups in one strand. Proceedings B 1987, 90 (1), 41-46.
41.Kaisti, M.; Kerko, A.; Aarikka, E.; Saviranta, P.; Boeva, Z.; Soukka, T.; Lehmusvuori, A., Real-time wash-free detection of unlabeled PNA-DNA hybridization using discrete FET sensor. Scientific Reports 2017, 7 (1), 15734.
42.Ohtake, T., Development of High Sensitive DNA Sensor by Using Probe PNA with IS-FET Electrode. Electrochemistry 2006, 74 (2), 114-117.
43.Uno, T.; Tabata, H.; Kawai, T., Peptide−Nucleic Acid-Modified Ion-Sensitive Field-Effect Transistor-Based Biosensor for Direct Detection of DNA Hybridization. Analytical Chemistry 2007, 79 (1), 52-59.
44.Caruthers, M., Gene synthesis machines: DNA chemistry and its uses. Science 1985, 230 (4723), 281-285.
45.Shabarova, Z. A.; Bogdanov, A. A., Reactions of Nucleotide Phosphate Groups. In Advanced Organic Chemistry of Nucleic Acids, 2008.
46.Chia-Chang, T.; Pei-Ling, C.; Chih-Jung, S.; Tsung-Wu, L.; Ming-Hsueh, T.; Yun-Chorng, C.; Yit-Tsong, C., Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology 2011, 22 (13), 135503.
47.Chen, K.-I.; Li, B.-R.; Chen, Y.-T., Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6 (2), 131-154.
48.Lin, T.-W.; Hsieh, P.-J.; Lin, C.-L.; Fang, Y.-Y.; Yang, J.-X.; Tsai, C.-C.; Chiang, P.-L.; Pan, C.-Y.; Chen, Y.-T., Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proceedings of the National Academy of Sciences 2010, 107 (3), 1047-1052.
49.Wenga, G.; Jacques, E.; Salaün, A. C.; Rogel, R.; Pichon, L.; Geneste, F., Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. Biosensors and Bioelectronics 2013, 40 (1), 141-146.
50.Hideshima, S.; Sato, R.; Inoue, S.; Kuroiwa, S.; Osaka, T., Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking. Sensors and Actuators B: Chemical 2012, 161 (1), 146-150.
51.Cai, B.; Wang, S.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G.-J., Ultrasensitive Label-Free Detection of PNA–DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano 2014, 8 (3), 2632-2638.
52.Ramnani, P.; Gao, Y.; Ozsoz, M.; Mulchandani, A., Electronic Detection of MicroRNA at Attomolar Level with High Specificity. Analytical Chemistry 2013, 85 (17), 8061-8064.
53.Gao, A.; Lu, N.; Dai, P.; Li, T.; Wang, Y. In Label-free and ultrasensitive detection of microrna biomarkers in lung cancer cells based on silicon nanowire FET biosensors, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 16-20 June 2013; 2013; pp 2439-2442.
54.He, J.; Zhu, J.; Gong, C.; Qi, J.; Xiao, H.; Jiang, B.; Zhao, Y., Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors. PLOS ONE 2016, 10 (12), e0145160.
55.Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K.; Williams, R. S., Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires. Nano Letters 2004, 4 (2), 245-247.
56.Elnathan, R.; Kwiat, M.; Pevzner, A.; Engel, Y.; Burstein, L.; Khatchtourints, A.; Lichtenstein, A.; Kantaev, R.; Patolsky, F., Biorecognition Layer Engineering: Overcoming Screening Limitations of Nanowire-Based FET Devices. Nano Letters 2012, 12 (10), 5245-5254.
57.Vienna, W. P. I. W. Debye-length-Multi-scale modeling and simulation of field-effect nano-biosensors.
58.Stern, E.; Vacic, A.; Rajan, N. K.; Criscione, J. M.; Park, J.; Ilic, B. R.; Mooney, D. J.; Reed, M. A.; Fahmy, T. M., Label-free biomarker detection from whole blood. Nature nanotechnology 2010, 5 (2), 138-142.
59.Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A., Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano letters 2007, 7 (11), 3405-3409.
60.陳泓成. 利用 SPRi 和 FET 探討中性 DNA 與一般 DNA 探針於生物晶片應用上之價值 國立中央大學, 2012.
61.Egginger, M.; Bauer, S.; Schwodiauer, R.; Neugebauer, H.; Sariciftci, N. S., Current versus gate voltage hysteresis in organic field effect transistors. Monatsh Chem 2009, 140 (7), 735-750.
62.Natsume, T.; Ishikawa, Y.; Dedachi, K.; Tsukamoto, T.; Kurita, N., Hybridization energies of double strands composed of DNA, RNA, PNA and LNA. Chemical physics letters 2007, 434 (1-3), 133-138.
63.蔡致勤. 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究 國立中央大學, 2016.
64.Lu, N.; Gao, A.; Dai, P.; Song, S.; Fan, C.; Wang, Y.; Li, T., CMOS-Compatible Silicon Nanowire Field-Effect Transistors for Ultrasensitive and Label-Free MicroRNAs Sensing. Small 2014, 10 (10), 2022-2028.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2018-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明