博碩士論文 104324606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.142.12.240
姓名 阿芭特(Alfonsina Abat Amelenan Torimtubun)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子
(Solution-Sheared Dicyanomethylene-Substituted Quinoidal Dithioterthiophene (DTDSTQ)-Based Small Molecules for High-Performance n-Type Organic Thin Film Transistors Application)
相關論文
★ 自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估★ 硫碳鏈聯噻吩環小分子半導體及高介電常數TiOX/SiOX介電層製備低電壓場效應光電晶體元件
★ 高介電常數TiOX/SiOX介電層製備低電壓場效應 電晶體元件★ 利用可溶液製程之含硫碳鏈聯噻吩小分子製作高效能有機場效應電晶體
★ 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用★ 利用溶液製程製作不同次結構之併環噻吩小分子高效能有機場效應電晶體
★ 利用超音波噴塗技術製備鈣鈦礦薄膜於太陽能 電池元件之應用★ 利用溶液剪切力塗佈法製作高效能DTTRQ小分子 N 型有機場效電晶體元件
★ 利用溶液剪切力塗佈法製備高分子與小分子混摻之有機場效電晶體元件★ 利用兩步驟超音波噴塗技術製備平面型p-i-n結構鈣鈦礦太陽能電池元件之應用
★ 透明氧化物薄膜電晶體與電晶體式記憶體之分析與應用★ 以含硫碳鏈並?吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體
★ 溶液剪切力 法製備醌型噻吩並異靛藍 (DTPQ) N型小分子 半 導體於有機場效應電晶 體 應用★ 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯?吩小分子半導體材料
★ 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池★ 超音波噴塗法製備鈣鈦礦薄膜並探討添加劑對薄膜形貌及其太陽能電池元件光伏表現之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有機半導體溶液製程沉積方法提供有前景的技術來製造大面積,低成本和彈性的有機電子元件。本研究報告了通過剪切力塗佈法方法及分子設計工程增強n通道有機薄膜電晶體管 (Organic Thin Film Transistor; OTFT) 性能的策略。我們使用下列四種具有不同烷基側鍊長度的二氰基亞甲基取代的醌型二噻吩噻吩(DTDSTQ)為核心的新型有機半導體的新型材料系列: (1)DTDSTQ-6 (硫代己基),(2)DTDSTQ-10 (硫代癸基),(3)DTDSTQ-14 (硫代十四烷基),並且在烷基側餾分中不引入硫 (4)DTDRTQ-14 (十四烷基)。從DFT計算和單晶X光射線衍射獲得的優化的幾何結果顯示了DTDSTQ的高核平面性。 DTDSTQ核心以面對面的π-π堆疊佈置堆疊,堆疊距離為3.42 Å,短分子間S-N距離為3.56 Å,形成二維網絡電荷傳輸。更進一步結合2D-GIXRD分析,知道有機分子側立於基板上。高核平面性和非常低 -4.2 eV的LUMO能階有利的分子組裝,也表明DTDSTQ可能是新型有前景的n型有機半導體材料。對這些新化合物的物理,電化學以及電學性質進行了深入研究。通過溶液剪切力塗佈的DTDSTQ-14實現了高達0.41 cm2V-1s-1的最高電子遷移率,具有至少1個月的良好熱穩定性。結果表明,通過側鏈基工程可以改善剪切DTDSTQ的元件性能。
摘要(英)
Solution-processable organic semiconductor deposition methods show promising technologies to fabricate large-area, low-cost and flexible organic electronics. This study reports the strategy for enhancing n-channel organic thin film transistors (OTFTs) performance by molecular design engineering through solution-shearing method. New series of organic semiconductor materials based small molecules with the core of dicyanomethylene-substituted quinoidal dithioterthiophene (DTDSTQ) modified by different alkyl side chain length: (1)DTDSTQ-6 (thio-hexyl), (2)DTDSTQ-10 (thio-decyl), (3)DTDSTQ-14 (thio-tetradecyl) and without sulfur introduction in alkyl side moiety: (4)DTDRTQ-14 (tetradecyl) were used. Optimized geometry obtained from DFT calculation and single-crystal X-ray diffraction reveals the high core planarity of DTDSTQ. The DTDSTQ core packed in a face-to-face slipped π-π stacking arrangement, with short stacking distance of 3.42 Å and short intermolecular S – N distance of 3.56 Å, forming 2-dimensional network charge transport. Further investigation with 2D-GIXRD analysis reveal that molecules packed edge-on to the substrate. The favorable molecular packing, the high core planarity and very low LUMO energy level of -4.2 eV suggesting that DTDSTQs could be a promising new n-type organic semiconductor materials. The physical, electrochemical as well as electrical properties of these new compounds are thoroughly investigated. The highest electron mobility of up to 0.41 cm2 V-1 s-1 with good thermal stability for at least 1 month was achieved by solution-sheared DTDSTQ-14. The results show that the device performance of solution-sheared DTDSTQs can be improved by side chain engineering.
關鍵字(中) ★ 有機薄膜晶體管
★ 溶液剪切
★ n型有機小分子
★ 有機半導體
關鍵字(英) ★ organic thin film transistors
★ solution shearing
★ n-type organic small molecule
★ organic semiconductor
論文目次 摘要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xiii
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 Organic Thin Film Transistors (OTFTs) 4
1-2-1 OTFTs Device Architecture 5
1-2-2 Operating Principle 6
1-2-3 Electrical Characteristics 9
1-3 Organic Semiconductor Small Molecules 15
1-3-1 p-Type Organic Semiconductor 16
1-3-2 n-Type Organic Semiconductor 17
1-3-2-1 Material Requirements 20
1-3-2-2 Quinoidal Oligothiophenes 22
1-4 Organic Semiconductor Deposition Process 24
1-4-1 Vacuum Thermal Deposition 24
1-4-2 Solution Deposition 26
1-4-2-1 Drop-casting 26
1-4-2-2 Spin-coating 29
1-4-2-3 Printing 30
1-4-2-4 Meniscus-guided Coating - Solution Shearing 33
1-5 Research Objective 35
1-6 Thesis Outline 37
CHAPTER 2 EXPERIMENTAL SECTION 39
2-1 Materials 39
2-1-1 Organic Semiconductors 39
2-1-2 Solvents 40
2-2 Experiment Apparatus 40
2-3 Experimental Methods 41
2-3-1 Device Fabrication 41
2-3-2 Electrical Measurement 43
2-3-3 Thin-Film Characterization 44
2-3-3-1 Polarized Optical Microscopy (POM) 44
2-3-3-2 Ultraviolet – Visible Spectrometer (UV-Vis) 44
2-3-3-3 Atomic Force Microscopy (AFM) 45
2-3-3-4 Grazing Incidence X-Ray Diffraction (GIXRD) 45
2-3-3-5 Transmission Electron Microscopy (TEM) 46
2-3-4 DFT Calculation 46
CHAPTER 3 RESULTS AND DISCUSSION 47
3-1 Material Properties 47
3-1-1 Physical and Electrochemical Properties 47
3-1-2 Molecular Orbital Computation 49
3-1-3 Optical Properties 51
3-2 Organic Thin-Film Transistors Characterization 54
3-3 Crystal Structures 59
3-4 Thin Film Microstructures and Morphologies 61
3-4-1 Optical and Polarized Optical Microscopy (OM, POM) 61
3-4-2 Atomic Force Microscopy (AFM) 65
3-4-3 Grazing – Incidence X-Ray Diffraction (GIXRD) 68
3-4-4 Transmission Electron Microscopy (TEM) 71
3-5 Device Stability 73
CHAPTER 4 CONCLUSION AND FUTURE WORK 75
4-1 Conclusion 75
4-2 Future Work 76
BIBLIOGRAPHY 77
APPENDIX 85
參考文獻
[1] J. E. Lilienfeld, Method and apparatus for controlling electric currents. US Pat. 1,745,175 1930, 1–4.
[2] A. Facchetti, Mater. Today 2007, 10, 28.
[3] C. Reese, M. Roberts, M. Ling, Z. Bao, Elsevier 2004, 7021, 20.
[4] G. Horowitz, Adv. Mater. 1998, 10, 365.
[5] M. Mas-Torrent, C. Rovira, Chem. Rev. 2011, 111, 4833.
[6] D. Kahng, Electric Field Cotrolled Semiconductor Device 1963, 1–6.
[7] Y. Kuo, Electrochem. Soc. Interface 2013, 22, 55.
[8] Shirikawa, J. Chem. Soc. Chem. Commun. 1977, 578.
[9] B. Kumar, B. K. Kaushik, Y. S. Negi, Polym. Rev. 2014, 54, 33.
[10] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99.
[11] M. Muccini, Nat. Mater. 2006, 5, 605.
[12] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
[13] H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
[14] F. M. Li, A. Nathan, Y. Wu, B. S. Ong, Organic Thin Film Transistor Integration; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2011.
[15] C. R. Newman, C. D. Frisbie, D. A. Da Silva Filho, J. L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
[16] E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. Van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, D. M. De Leeuw, IEEE J. Solid-State Circuits 2007, 42, 84.
[17] H. Wu, S. W. Chiang, W. Lin, C. Yang, Z. Li, J. Liu, X. Cui, F. Kang, C. P. Wong, Sci. Rep. 2014, 4, 6275.
[18] D. Briand, A. Oprea, J. Courbat, N. Bârsan, Mater. Today 2011, 14, 416.
[19] M.-J. Kim, D. W. Kim, Y. Noh, H. S. Kang, H. Kang, J. Y. Kim, C. D. Kim, I. B. Kang, I. J. Chung, IEEE Flex. Electron. Displays Conf. Exhib. 2009.
[20] T. Someya, A. Dodabalapur, J. Huang, K. C. See, H. E. Katz, Adv. Mater. 2010, 22, 3799.
[21] M. Guerin, A. Daami, S. Jacob, E. Bergeret, E. Bènevent, P. Pannier, R. Coppard, IEEE Trans. Electron Devices 2011, 58, 3587.
[22] L. Zhang, T. Wu, Y. Guo, Y. Zhao, X. Sun, Y. Wen, G. Yu, Y. Liu, Sci. Rep. 2013, 3, 1080.
[23] M. Eslamian, Nano-Micro Lett. 2017, 9, 1.
[24] Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145.
[25] R. J. Chesterfield, C. R. Newman, T. M. Pappenfus, P. C. Ewbank, M. H. Haukaas, K. R. Mann, L. L. Miller, C. D. Frisbie, Adv. Mater. 2003, 15, 1278.
[26] C. R. Newman, C. D. Frisbie, D. A. da Silva, J. L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater 2004, 16, 4436.
[27] H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. van Breemen, D. M. de Leeuw, Nature 2001, 414, 599.
[28] H. Sirringhaus, Adv. Mater. 2014, 26, 1319.
[29] C. Cruickshank, Cintelliq simplifies patent research for the organic semiconductor industry 2007, 1–2.
[30] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
[31] R. Scaldaferri, Fabrication and Characterization of Advanced Organic Thin Film Tranistors, Universita Degli Studi Federico II di Napoli, 2009.
[32] T. N. Jackson, Y. Lin, S. Member, D. J. Gundlach, IEEE J. Sel. Top. Quantum Electron. 1998, 4, 100.
[33] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, S. Ponomarenko, S. Kirchmeyer, W. Weber, J. Appl. Phys. 2003, 93, 2977.
[34] H. Rost, J. Ficker, J. S. Alonso, L. Leenders, I. McCulloch, Synth. Met. 2004, 145, 83.
[35] Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, Y. Ma, Appl. Phys. Lett. 2003, 83, 1644.
[36] M. L. Chabinyc, R. A. Street, J. E. Northrup, Appl. Phys. Lett. 2007, 90, 12.
[37] M. L. Chabinyc, F. Endicott, B. D. Vogt, D. M. DeLongchamp, E. K. Lin, Y. Wu, P. Liu, B. S. Ong, Appl. Phys. Lett. 2006, 88, 11.
[38] R. J. Chesterfield, New n-Channel Organic Semiconductors for Thin Film Transistors, University of Minnesota, 2004.
[39] G. Horowitz, Adv. Mater. 1998, 10, 365.
[40] C. R. C. Newman, C. D. Frisbie, A. Demetrio, S. Filho, J. Bre, Chem. … 2004, 4436.
[41] J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
[42] H. Usta, A. Facchetti, Large Area Flex. Electron. 2015, 1.
[43] H. Dong, C. Wang, W. Hu, Chem. Commun. 2010, 46, 5211.
[44] B. O. D. Jurchescu, M. Popinciuc, B. J. Van Wees, T. T. M. Palstra, Adv. Mater. 2007, 19, 688.
[45] N. Stingelin-Stutzmann, E. Smits, H. Wondergem, C. Tanase, P. Blom, P. Smith, D. de Leeuw, Nat. Mater. 2005, 4, 601.
[46] Y. Li, Y. Wu, P. Liu, Z. Prostran, S. Gardner, B. S. Ong, Chem. Mater. 2007, 19, 418.
[47] L. Chua, J. Zaumseil, J. Chang, E. C. Ou, Nature 2005, 434, 194.
[48] J. Mei, Z. Bao, Chem. Mater 2014, 26, 604.
[49] T. M. Pappenfus, R. J. Chesterfield, C. D. Frisbie, K. R. Mann, J. Casado, J. D. Raff, L. L. Miller, J. Am. Chem. Soc. 2002, 124, 4184.
[50] B. A. Facchetti, M. Mushrush, H. E. Katz, T. J. Marks, Adv. Mater. 2003, 15, 33.
[51] M. Yoon, S. a Dibenedetto, A. Facchetti, T. J. Marks, Thin Film. 2005, 3, 1348.
[52] J. A. Letizia, A. Facchetti, C. L. Stern, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 13476.
[53] H. E. Katz, J. Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc. 2000, 122, 7787.
[54] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, W. Andreoni, Appl. Phys. Lett. 2002, 80, 2517.
[55] R. J. Chesterfield, J. C. McKeen, C. R. Newman, C. D. Frisbie, P. C. Ewbank, K. R. Mann, L. L. Miller, J. Appl. Phys. 2004, 95, 6396.
[56] J. Kastner, J. Paloheimo, H. K, L. I. Festkorperphysik, A. Vienna, Springer Ser. Solid-State Sci. 1993, 113, 512.
[57] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 1995, 67, 121.
[58] J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, J. Cornil, Proc. Natl. Acad. Sci. 2002, 99, 5804.
[59] A. Afzali, C. Dimitrakopoulos, T. B. Carmichael, J. Am. Chem. Soc. 2002, 124, 8812.
[60] H. Klauk, Organic Electronics Materials, Manufacturing and Applications; Weinheim, 2006.
[61] J. L. Bredas, G. B. Street, Acc. Chem. Res. 1985, 18, 309.
[62] A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chemie Int. Ed. 2000, 39, 4547.
[63] J. Casado, R. Ponce Ortiz, J. T. López Navarrete, Chem. Soc. Rev. 2012, 41, 5672.
[64] S. Handa, E. Miyazaki, K. Takimiya, Y. Kunugi, J. Am. Chem. Soc. 2007, 129, 11684.
[65] Y. Xiong, J. Tao, R. Wang, X. Qiao, X. Yang, D. Wang, H. Wu, H. Li, Adv. Mater. 2016, 5949.
[66] C. Wang, Y. Qin, Y. Sun, Y. S. Guan, W. Xu, D. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 15978.
[67] C. Zhang, Y. Zang, F. Zhang, Y. Diao, C. R. McNeill, C. an Di, X. Zhu, D. Zhu, Adv. Mater. 2016, 8456.
[68] C. S. Kim, S. Lee, E. D. Gomez, J. E. Anthony, Y. L. Loo, Appl. Phys. Lett. 2008, 93, 1.
[69] H. Li, J. Am. Chem. Soc. 2012, 134, 2760.
[70] J. Kim, S. Cho, J. Kang, Y. H. Kim, S. K. Park, ACS Appl. Mater. Interfaces 2014, 6, 7133.
[71] J. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, M. Giles, I. Mcculloch, H. Sirringhaus, Chem. Mater 2004, 16, 4772.
[72] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, Nat. Commun. 2014, 5, 1.
[73] S. S. Kim, S. I. Na, J. Jo, G. Tae, D. Y. Kim, Adv. Mater. 2007, 19, 4410.
[74] M. Ikawa, T. Yamada, H. Matsui, H. Minemawari, J. Tsutsumi, Y. Horii, M. Chikamatsu, R. Azumi, R. Kumai, T. Hasegawa, Nat. Commun. 2012, 3, 1176.
[75] M. Shao, S. Das, K. Xiao, J. Chen, J. K. Keum, I. N. Ivanov, G. Gu, W. Durant, D. Li, D. B. Geohegan, J. Mater. Chem. C 2013, 1, 4384.
[76] H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 2011, 475, 364.
[77] B. Peng, Z. Wang, P. K. L. Chan, J. Mater. Chem. C 2016, 4, 8628.
[78] H. A. Becerril, M. E. Roberts, Z. Liu, J. Locklin, Z. Bao, Adv. Mater. 2008, 20, 2588.
[79] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature 2011, 480, 504.
[80] Y. Diao, B. C.-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665.
[81] W. Y. Lee, J. H. Oh, S. L. Suraru, W. C. Chen, F. Würthner, Z. Bao, Adv. Funct. Mater. 2011, 21, 4173.
[82] S. Mann, G. a. Ozin, Synthesis of inorganic materials with complex form. Nature 1996, 382, 313–318.
[83] G. H. Gelinck, H. E. a Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, D. M. de Leeuw, Nat. Mater. 2004, 3, 106.
[84] G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778.
[85] T. Kowalewski, R. D. Mccullough, C. High, E. Synchrotron, C. U. V, N. York, J. Am. Chem. Soc. 2009, 131, 2521.
[86] J. L. Segura, N. Martín, Chem Soc Rev 2004, 34, 31.
[87] Y. W. Park, Chem. Soc. Rev. 2010, 39, 2352.
[88] H. Usta, A. Facchetti, T. J. Marks, Acc. Chem. Res. 2011, 44, 501.
[89] W. Jiang, Y. Li, Z. Wang, Chem. Soc. Rev. 2013, 42, 6113.
[90] C. Wang, ACS Appl. Mater. Interfaces 2015, 7, 15978.
[91] S. Vegiraju, G. He, C. Kim, P. Priyanka, Y. Chiu, C. Liu, C. Huang, J. Ni, Y. Wu, Z. Chen, G. Lee, S. Tung, C. Liu, M. Chen, 2017, 1606761, 1.
[92] S. Feng, T. Bein, Science 1994, 265, 1839.
[93] C. Zhang, Y. Zang, E. Gann, C. R. McNeill, X. Zhu, C. A. Di, D. Zhu, J. Am. Chem. Soc. 2014, 136, 16176.
[94] Q. Wu, X. Qiao, Q. Huang, J. Li, Y. Xiong, X. Gao, H. Li, RSC Adv. 2014, 4, 16939.
[95] T. Lei, J. H. Dou, J. Pei, Adv. Mater. 2012, 24, 6457.
[96] Y. Sun, Y. Ma, Y. Liu, Y. Lin, Z. Wang, Y. Wang, C. Di, K. Xiao, X. Chen, W. Qiu, B. Zhang, G. Yu, W. Hu, D. Zhu, Adv. Funct. Mater. 2006, 16, 426.
[97] Y. Liu, Y. Wang, W. Wu, Y. Liu, H. Xi, L. Wang, W. Qiu, K. Lu, C. Du, G. Yu, Adv. Funct. Mater. 2009, 19, 772.
[98] J. Youn, P. Y. Huang, Y. W. Huang, M. C. Chen, Y. J. Lin, H. Huang, R. P. Ortiz, C. Stern, M. C. Chung, C. Y. Feng, L. H. Chen, A. Facchetti, T. J. Marks, Adv. Funct. Mater. 2012, 22, 48.
[99] D. E. Janzen, M. W. Burand, P. C. Ewbank, T. M. Pappenfus, H. Higuchi, D. A. Da Silva Filho, V. G. Young, J. L. Brédas, K. R. Mann, J. Am. Chem. Soc. 2004, 126, 15295.
[100] J. H. Dou, Y. Q. Zheng, T. Lei, S. D. Zhang, Z. Wang, W. Bin Zhang, J. Y. Wang, J. Pei, Adv. Funct. Mater. 2014, 24, 6270.
[101] J. Li, X. Qiao, Y. Xiong, H. Li, D. Zhu, Chem. Mater 2014, 26, 5782.
[102] A. C. J. Heinrich, B. Thiedemann, P. J. Gates, A. Staubitz, Org. Lett. 2013, 15, 4666.
[103] F. Gohier, P. Frere, J. Roncali, J. Org. Chem. 2013, 78, 1497−1503.
[104] S. R. Forrest, Nature 2004, 428, 911.
[105] Q. Wu, S. Ren, M. Wang, X. Qiao, H. Li, X. Gao, X. Yang, D. Zhu, Adv. Funct. Mater. 2013, 23, 2277.
[106] T. Lei, J. Wang, J. Pei, Chem. Mater 2014, 26, 594.
[107] A. L. Briseno, Q. Miao, M. Ling, C. Reese, H. Meng, Z. Bao, F. Wudl, J. Am. Chem. Soc. 2006, 128, 15576.
[108] Y. Deng, B. Sun, Y. He, J. Quinn, C. Guo, Y. Li, Angew. Chemie - Int. Ed. 2016, 55, 3459.
[109] X. Guo, R. P. Ortiz, Y. Zheng, M. Kim, S. Zhang, Y. Hu, G. Lu, A. Facchetti, T. J. Marks, 2011, 13685.
[110] T. D. Anthopoulos, G. C. Anyfantis, G. C. Papavassiliou, D. M. De Leeuw, Appl. Phys. Lett. 2007, 90.
[111] H. Usta, C. Risko, Z. Wang, H. Huang, M. K. Deliomeroglu, A. Zhukhovitskiy, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2009, 131, 5586.
[112] M. Ozdemir, D. Choi, G. Kwon, Y. Zorlu, B. Cosut, H. Kim, A. Facchetti, C. Kim, H. Usta, ACS Appl. Mater. Interfaces 2016, 8, 14077.
[113] B. A. Jones, A. Facchetti, M. R. Wasielewski, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 15259.
[114] Q. Ye, J. Chang, K. Huang, X. Shi, J. Wu, Org. Lett. 2013, 2011.
[115] C. Wang, Y. Zang, Y. Qin, Q. Zhang, Y. Sun, C. Di, W. Xu, D. Zhu, Chem. - A Eur. J. 2014, 20, 13755.
[116] Z. Yi, L. Ma, P. Li, L. Xu, X. Zhan, J. Qin, X. Chen, Y. Liu, S. Wang, Polym. Chem. 2015, 6, 5369.
[117] H. Hwang, D. Khim, J. M. Yun, E. Jung, S. Y. Jang, Y. H. Jang, Y. Y. Noh, D. Y. Kim, Adv. Funct. Mater. 2015, 25, 1146.
[118] S. C. Martens, U. Zschieschang, H. Wadepohl, H. Klauk, L. H. Gade, Chem. - A Eur. J. 2012, 18, 3498.
[119] B. A. Jones, M. J. Ahrens, M. H. Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, Angew. Chemie - Int. Ed. 2004, 43, 6363.
[120] J. H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Würthner, Appl. Phys. Lett. 2007, 91.
[121] R. Schmidt, M. M. Ling, J. H. Oh, M. Winkler, M. Könemann, Z. Bao, F. Würthner, Adv. Mater. 2007, 19, 3692.
[122] X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, D. M. DeLongchamp, Nat. Commun. 2013, 4, 1.
[123] C. Zhang, D. Yuan, H. Wu, E. Gann, L. Thomsen, C. R. McNeill, C. Di, X. Zhu, D. Zhu, J. Mater. Chem. C 2017.
[124] Q. Wu, R. Li, W. Hong, H. Li, X. Gao, D. Zhu, Chem.Mater. 2011, 1.
[125] M. Gsänger, E. Kirchner, M. Stolte, C. Burschka, V. Stepanenko, J. Pflaum, F. Würthner, J. Am. Chem. Soc. 2014.
[126] X. Zhang, J. P. Johnson, J. W. Kampf, A. J. Matzger, Chem. Mater 2006, 18, 3470.
[127] Q. Wu, X. Qiao, Q. Huang, J. Li, Y. Xiong, X. Gao, H. Li, RSC Adv. 2014, 4, 16939.
[128] A. Moliton, R. C. Hiorns, Polym. Int. 2004, 53, 1397.
[129] B. J. Cornil, D. Beljonne, J. Calbert, J. Brødas, J. Cornil, D. Beljonne, J. Calbert, J.-L. Brédas, Adv. Mater. 2001, 13, 1053.
[130] F. Garnier, G. Horowitz, D. Fichou, Synth. Met. 1989, 28, 705.
[131] Y. Suzuki, M. Shimawaki, E. Miyazaki, I. Osaka, K. Takimiya, Chem. Mater 2010, 23, 795.
[132] G. Giri, S. Park, M. Vosgueritchian, M. M. Shulaker, Z. Bao, Adv. Mater. 2014, 26, 487.
[133] J. H. Oh, W. Y. Lee, T. Noe, W. C. Chen, M. K??nemann, Z. Bao, J. Am. Chem. Soc. 2011, 133, 4204.
[134] Y. Deng, B. Sun, J. Quinn, Y. He, J. Ellard, C. Guo, Y. Li, RSC Adv. 2016, 6, 45410.
[135] Y. Suzuki, E. Miyazaki, K. Takimiya, 2010, 2010, 10453.
[136] M. Nakano, I. Osaka, K. Takimiya, J. Mater. Chem. C 2015, 3, 283.
[137] H. Zhong, J. Smith, S. Rossbauer, A. J. P. White, T. D. Anthopoulos, M. Heeney, Adv. Mater. 2012, 24, 3205.
[138] Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, J. Am. Chem. Soc. 2012, 134, 4084.
[139] H. Moon, R. Zeis, E.-J. Borkent, C. Besnard, A. J. Lovinger, T. Siegrist, C. Kloc, Z. Bao, J. Am. Chem. Soc. 2004, 126, 15322.
[140] C. D. Sheraw, T. N. Jackson, D. L. Eaton, J. E. Anthony, Adv. Mater. 2003, 15, 2009.
[141] A. L. Briseno, Q. Miao, M.-M. Ling, C. Reese, H. Meng, Z. Bao, F. Wudl, J. Am. Chem. Soc. 2006, 128, 15576.
[142] M. D. Curtis, J. Cao, J. W. Kampf, J. Am. Chem. Soc. 2004, 126, 4318.
[143] M. M. Payne, S. R. Parkin, J. E. Anthony, C. Kuo, T. N. Jackson, J. Am. Chem. Soc. 2005, 127, 4986.
[144] A. Bondi, J. Phys. Chem. 1964, 68, 441.
[145] S. S. Batsanov, Inorg. Mater. Transl. from Neorg. Mater. Orig. Russ. Text 2001, 37, 871.
[146] S. R. Chaudhari, J. M. Griffin, K. Broch, A. Lesage, V. Lemaur, D. Dudenko, Y. Olivier, H. Sirringhaus, L. Emsley, C. P. Grey, Chem. Sci. 2017, 3126.
[147] X. Liu, J. Huang, J. Xu, D. Gao, W. Zhang, K. Shi, G. Yu, RSC Adv. 2016, 6, 35394.
[148] W. Y. Lee, G. Giri, Y. Diao, C. J. Tassone, J. R. Matthews, M. L. Sorensen, S. C. B. Mannsfeld, W. C. Chen, H. H. Fong, J. B. H. Tok, M. F. Toney, M. He, Z. Bao, Adv. Funct. Mater. 2014, 24, 3524.
[149] H. A. Becerril, N. Miyaki, M. L. Tang, R. Mondal, Y.-S. Sun, A. C. Mayer, J. E. Parmer, M. D. McGehee, Z. Bao, J. Mater. Chem. 2009, 19, 591.
[150] A. Tagaya, Y. Koike, Polym. J. 2012, 44, 306.
[151] R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 2009, 11.
[152] A. J. Lovinger, T. T. Wang, Polymer (Guildf). 1979, 20, 725.
[153] R. Z. Rogowski, A. A. Darhuber, Langmuir 2010, 26, 11485.
[154] C. W. Sele, B. K. Charlotte Kjellander, B. Niesen, M. J. Thornton, J. B. P. H. Van Der Putten, K. Myny, H. J. Wondergem, A. Moser, R. Resel, A. J. J. M. Van Breemen, N. Van Aerle, P. Heremans, J. E. Anthony, G. H. Gelinck, Adv. Mater. 2009, 21, 4926.
[155] J. Shin, T. R. Hong, T. W. Lee, A. Kim, Y. H. Kim, M. J. Cho, D. H. Choi, Adv. Mater. 2014, 26, 6031.
[156] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, Adv. Funct. Mater. 2005, 15, 671.
[157] J. Rivnay, a Salleo, S. Mannsfeld, C. Miller, M. Toney, Chem. Rev. 2012, 112, 5488.
[158] Y. Huang, W. Huang, J. Yang, J. Ma, M. Chen, H. Zhu, W. Wang, Polym. Chem. 2016, 7, 538.
[159] S. R. Forrest, Chem. Rev. 1997, 97, 1793.
[160] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. a a Pettersson, O. Ingana, Macromolecules 2000, 33, 3120.
[161] H. Li, F. S. Kim, G. Ren, S. A. Jenekhe, J. Am. Chem. Soc. 2013, 135, 14920.
[162] R. Kim, P. S. K. Amegadze, I. Kang, H. J. Yun, Y. Y. Noh, S. K. Kwon, Y. H. Kim, Adv. Funct. Mater. 2013, 23, 5719.
[163] I. Doi, E. Miyazaki, K. Takimiya, Y. Kunugi, Chem. Mater. 2007, 19, 5230.
[164] H. Tian, J. Shi, D. Yan, L. Wang, Y. Geng, F. Wang, Adv. Mater. 2006, 18, 2149.
[165] S. Nagamatsu, S. Oku, K. Kuramoto, T. Moriguchi, W. Takashima, T. Okauchi, S. Hayase, ACS Appl. Mater. Interfaces 2014, 6, 3847−3852.
[166] C. Videlot-Ackermann, J. Ackermann, H. Brisset, K. Kawamura, N. Yoshimoto, P. Raynal, A. El Kassmi, F. Fages, J. Am. Chem. Soc. 2005, 127, 16346.
[167] F. Paulus, J. U. Engelhart, P. E. Hopkinson, C. Schimpf, A. Leineweber, H. Sirringhaus,
指導教授 劉振良(Cheng-Liang Liu) 審核日期 2017-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明