博碩士論文 104325602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:54.225.39.142
姓名 雷諾(Rino Yunantara)  查詢紙本館藏   畢業系所 營建管理研究所
論文名稱 綠牆系統溫度及熱傳遞影響因素分析之研究-以台灣建築為例
(Analysis of Factors Related to Green Wall Temperature Performance and Heat Transfer: Case Study of Buildings in Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球暖化是正在上演的全球議題之一,該議題之衝擊則隨著時間而日益加劇,如平均溫度上升、水患頻繁、臭氧層破壞等,相對需要一系列的解決方法或因應策略來減緩影響。建築規劃導入永續營建作為,已被證實可以減緩並防止全球暖化加劇。綠牆系統是一種透過植栽附掛在建築物外牆的永續營建作為,不僅符合景觀設計,更可有效降低建築物之溫度,進而減少室內空調之運作。本研究主要目的係調查造成綠牆及裸露牆面溫度差異之因素,這些因素包含綠牆系統之厚度、外牆材料,以及不同建築使用類型。另一個目的則分析不同厚度之綠牆對熱能傳遞之差距。本研究測試之綠牆厚度,包含0.25 公分、0.6公分、1.5公分、2.5公分、3公分及4.5公分。測試結果可發現,裸露牆面平均溫度約高於綠牆2~8度。然而,透過斯皮爾曼(Spearman)統計方法分析影響綠牆效率之主要因素,可發現綠牆厚度(-0.714)、綠牆設置方位(-0.600)、外牆材料(-0.676)此三項因素影響較為明顯。熱能傳遞部分,研究成果則顯示較厚的綠牆系統(4.5公分)具有最小的傳遞效果。整體而言,綠牆系統之熱能傳遞低於裸露牆面,最佳則可節省78,185.3 W/h之能源消耗。
摘要(英) Global warming is a global problem that is currently going on and needed a solution to encounter. The impact of these phenomena was increasingly time after time such as growing the temperature; flood, depletion of the ozone layer, and so on. Implementation of sustainable construction on the building is one of the responses to mitigate and prevent the effects of global warming. The Green Wall system is one form of application of sustainable construction by putting vegetation on the wall. The aim of this research is to investigate the role of several factors related to temperature differences in the green wall and bare wall. Those factors are the thickness of a green wall, the types of cladding materials, and the building orientation. The other purpose is to investigate green wall heat transfer related to temperature saving in different thickness of wall. There are several types of wall thickness will be used which are 0.25 cm, 0.6 cm, 1.5 cm, 2.5 cm, 3 cm and 4.5 cm. The results show that bare wall consistently has a higher temperature than green wall through all case studies, the overall temperature differences in range 2°-8°C. Furthermore, three variables, which are thickness, orientation and cladding materials, have a significant impact on green wall performances according to the results from experiments and the Spearman statistical analysis. The value is -0.714 (high) for thickness of green wall, orientation by -0.600 (medium) and cladding materials by -0.676 (high). The other results show that the thicker green wall (4.5 cm) the smallest heat transfer will occur. The heat transfer of green wall is consistently lower than bare wall with optimum value in 78185.3 W/h.
關鍵字(中) ★ 綠牆
★ 影響因素
★ 熱傳導
關鍵字(英) ★ Green wall
★ analysis factors
★ heat transfer
論文目次 TABLE OF CONTENTS

ABSTRACT i
摘要 ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
CHAPTER I 1
INTRODUCTION 1
1.1 Background 1
1.2 Research Objectives 3
1.3 Research Scope and Limitation 3
1.4 Methodology 4
1.5 Thesis Outline 6
CHAPTER II 7
LITERATURE REVIEW 7
2.1 Green Wall Systems 7
2.1.1 History 7
2.1.2 Green Wall systems definition 9
2.1.3 Green Wall Types 10
2.2 Heat Transfer 12
2.2.1 Conduction 13
2.2.2 Convection 14
2.2.3 Radiation 14
2.3 Materials 15
2.3.1 Tiles 15
2.3.2 Exposed Concrete 16
2.3.3 Gravel 17
2.4 Spearman Correlation using SPSS 17
2.5 Previous Studies 18
2.5.1 Relationship between green wall, thermal surface and ambient temperature 18
2.5.2 Relationship between green wall and bare wall temperatures 19
2.5.3 Relationship between green wall, material and vegetation 19
2.6 HOBO Temp Data Logger 20
CHAPTER III 21
METHODOLOGY 21
3.1 Building Case Studies 21
3.1.1 Food Science and Technology Laboratories of National Taiwan University 21
3.1.2 Student Counseling Center of National Taipei University of Technology 22
3.1.3 Department Mechanical Engineering of National Taipei University of Technology 22
3.1.4 Department Extension Education of National Taiwan University 23
3.1.5 Department Language Center of National Taiwan University 24
3.1.6 Department Psychology of National Taiwan University 25
3.2 Temperature Measurement with HOBO Data Logger 25
3.3 HOBO Data Logger Input 27
3.4 Analyzing Correlation in Green Wall and Bare Wall Temperatures 30
3.5 Mathematical Calculation for Heat Transfer 31
CHAPTER IV 32
RESULTS AND DISCUSSIONS 32
4.1 Thickness of Green Wall and Orientation 32
4.1.1 Food Science and Technology Laboratories of National Taiwan University 32
4.1.2 Student Counseling Center of National Taipei University of Technology 33
4.1.3 Department Mechanical Engineering of National Taipei University of Technology 34
4.1.4 Department Extension Education of National Taiwan University 35
4.1.5 Department Language Center of National Taiwan University 36
4.1.6 Department Psychology of National Taiwan University 37
4.1.7 Summary the thickness of green wall and the orientation 38
4.2 Types of Cladding Materials 40
4.2.1 Food Science and Technology Laboratories of National Taiwan University 40
4.2.2 Student Counseling Center of National Taipei University of Technology 41
4.2.3 Department Mechanical Engineering of National Taipei University of Technology 42
4.2.4 Department Extension Education of National Taiwan University 43
4.2.5 Department Language Center of National Taiwan University 44
4.2.6 Department Psychology of National Taiwan University 45
4.2.7 Summary the types of cladding materials 46
4.3 Summary the thickness of green wall, the orientation and the types of cladding material 48
4.4 Heat Transfer 50
CHAPTER V 52
CONCLUSION AND SUGGESTION 52
5.1 Conclusion 52
5.2 Suggestions 53
REFERENCES 54
APPENDIX 56
參考文獻 REFERENCES

1. Chen, C.-F., Performance evaluation and development strategies for green roofs in Taiwan: A review. Ecological Engineering, 2013. 52: p. 51-58.
2. ENERGY, B.O., Energy Statistics Handbook. 2015, MINISTRY OF ECONOMIC AFFAIRS: Taiwan.
3. EDinformatics, How is Heat Transferred? Conduction, Convection, Radiation. 2010.
4. Foundation, L.H. Understanding Sustainable Construction. 2015 July 2015 [cited 2015 December 2].
5. Wood, A., P. Bahrami, and D. Safarik, Green Walls in High-rise Buildings: An Output of the CTBUH Sustainability Working Group. 2014: Images Publishing.
6. Economist, T. The Rise of Green Building. Volume 373 2004 [cited 2015 December 2]; 8404:[
7. Pérez, G., et al., Behaviour of green facades in Mediterranean Continental climate. Energy conversion and management, 2011. 52(4): p. 1861-1867.
8. Köhler, M., Green facades—a view back and some visions. Urban Ecosystems, 2008. 11(4): p. 423-436.
9. Cities, G.R.f.H., Introduction to Green Walls Technology, Benefits & Design 2008.
10. Rohde Sloth, P., U. Lund Hansen, and S. Karg, Viking Age garden plants from southern Scandinavia–diversity, taphonomy and cultural aspects. Danish Journal of Archaeology, 2012. 1(1): p. 27-38.
11. Spot, V.G. History of the Vertical Garden. 2011.
12. Newman, P., Resilient cities. 2010.
13. Blanc, P., The vertical garden: from nature to the city. 2008: WW Norton & Company.
14. Yeang, K., Designing with nature: the ecological basis for architectural design. 1995: McGraw-Hill New York, NY.
15. Despommier, D., The vertical farm: feeding the world in the 21st century. 2010: Macmillan.
16. Ong, B.L., Green plot ratio: an ecological measure for architecture and urban planning. Landscape and urban planning, 2003. 63(4): p. 197-211.
17. DeNardo, J., et al., Stormwater mitigation and surface temperature reduction by green roofs. Transactions of the ASAE, 2005. 48(4): p. 1491-1496.
18. Chang, C.-R., M.-H. Li, and S.-D. Chang, A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 2007. 80(4): p. 386-395.
19. Rowe, D.B., Green roofs as a means of pollution abatement. Environmental Pollution, 2011. 159(8): p. 2100-2110.
20. Van Renterghem, T. and D. Botteldooren, Reducing the acoustical façade load from road traffic with green roofs. Building and environment, 2009. 44(5): p. 1081-1087.
21. Dunnett, N. and N. Kingsbury, Planting green roofs and living walls. 2008.
22. Yeh, Y.-P., Green Wall-The Creative Solution in Response to the Urban Heat Island Effect. National Chung-Hsing University, 2012.
23. Thompson, J.W. and K. Sorvig, Sustainable landscape construction: a guide to green building outdoors. 2007: Island Press.
24. Timur, Ö.B. and E. Karaca, Vertical Gardens. Advances in Landscape, 2013.
25. Sharp, R., Things You Need to Know About Green Walls. Building Design & Construction.
26. Gonchar, J., Vertical and verdant, living wall systems sprout on two buildings. Paris and Vancouver, Architectural Record, McGraw-Hill Construction. Retrieved on Aug, 2009. 20: p. 2009.
27. Guide, T.G.G. Green Facade Definition. 2014 [cited 2016 March 28]; Available from: http://www.growinggreenguide.org/technical-guide/introduction-to-roofs-walls-and-facades/green-facade-definition/.
28. Systems, G.P. Plants for your Greenwall. 2016 [cited 2016 March 28]; Available from: http://shop.gsky.com/plants-and-designs/.
29. Grey, G.O. What are Living Walls. 2009 [cited 2009.
30. Perini, K., et al., Greening the building envelope, façade greening and living wall systems. Open Journal of Ecology, 2011. 1(01): p. 1.
31. Engineering, G.E.T.S.o., Overview of Heat Transfer. 2002.
32. Sayma, C.L.a.N., Heat Transfer. 2009.
33. Gopi, S., Basic Civil Engineering. 2009.
34. Council, N.S. Limestone Quarrying and Processing: A Life-Cycle Inventory. 2008.
35. Statistics, L. Spearman′s Rank-Order Correlation using SPSS Statistics. 2013.
36. Windsor, U.o. What is SPSS? 2011.
37. Wong, N.H., et al., Thermal evaluation of vertical greenery systems for building walls. Building and environment, 2010. 45(3): p. 663-672.
38. Mazzali, U., et al., Experimental investigation on the energy performance of Living Walls in a temperate climate. Building and Environment, 2013. 64: p. 57-66.
39. Feng, H. and K. Hewage, Lifecycle assessment of living walls: air purification and energy performance. Journal of Cleaner Production, 2014. 69: p. 91-99.
40. Corporation, O.C. HOBO® Temp Data Logger (UX100-001) Manual. 2015.
41. Corporation, O.C. HOBO UX100 Loggers. 2015.
42. Toolbox, T.E. Conductive Heat Transfer. 2014 [cited 2016 April 25].
43. Philip, M.S.J.a.J., Thermophysical Properties of Plant Leaves and Their Influence on the Environment Temperature. 2010.
44. Architecture, C.L.E. Thermal Conductivity. 2014 [cited 2016 April, 27].
45. Toolbox, T.E. Thermal Conductivity for Materials and Gasses. 2014 [cited 2016 April, 27].
指導教授 陳介豪(Jieh-Haur Chen) 審核日期 2016-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明