博碩士論文 104326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.129.249.105
姓名 蕭毓撰(Yu-Chuan Hsiao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
(Feasibility of Carbon Dioxide Capture by using Accelerated Carbonation of Municipal Solid Waste Incineration (MSWI) Residues)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究
★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究
★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性
★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究
★ 污水處理廠逸散微粒之物理、化學及生物特性分析★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究
★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估
★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究★ 評估機械處理(MT)技術製備一般事業廢棄物固態衍生燃料之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究應用自行開發之半乾式旋轉窯加速碳酸鹽反應系統,探討都市垃圾焚化飛灰及底渣無害化及捕捉二氧化碳之可行性,研究分別針對二氧化碳的捕捉效率、加速碳酸鹽反應前後焚化飛灰之重金屬溶出特性、酸中和能力,以及後續水泥穩定化作業之水泥添加量之影響等進行評估。加速碳酸鹽反應系統控制條件,主要包括模擬焚化廢氣組成之二氧化碳(10 %)、二氧化硫(15及30 ppm)及反應系統的濕度(20 %及30 %)。研究結果顯示不論是焚化底渣或飛灰,控制前述之反應條件,反應均可在8小時左右,達成加速碳酸鹽礦化反應之效果(pH<9)。反應系統濕度對焚化灰渣捕捉二氧化碳效率的評估結果顯示,反應濕度較高(30 %)易造成阻塞灰渣孔隙,不利於二氧化碳於孔隙間的氣體流通性,致使二氧化碳捕捉量較反應濕度20 %為低,其中焚化飛灰及底渣對二氧化碳捕捉量分別從29.66 g/kg及77.73 g/kg降低至27.46 g/kg及66.37 g/kg。此外,焚化底渣對二氧化碳的捕捉量均較焚化飛灰為高,此係焚化底渣在反應系統之填充比較低,亦即孔隙率較高,因此,二氧化碳擴散性與底渣接觸反應的效果較佳。二氧化硫對二氧化碳捕捉量的競爭影響結果顯示,在廢氣含有較高濃度之二氧化硫(30 ppm)條件下,焚化飛灰或底渣之鈣含量將與二氧化硫反應並消耗,致使二氧化碳的捕捉量明顯降低。以10 %二氧化碳及反應濕度20 %的反應條件而言,當二氧化硫濃度從0 ppm增加至30 ppm時,焚化飛灰及底渣捕捉二氧化碳量,分別從29.66 g/kg及77.73 g/kg降低至23.79 g/kg及64.17 g/kg。
經加速碳酸鹽反應後飛灰及底渣之環境安全性評估結果顯示,反應後之焚化飛灰及底渣,其試驗重金屬之溶出濃度,均可符合法規管制標準,其中焚化飛灰中重金屬鉛之溶出濃度,可由反應前之4.12 mg/l降低至反應後之0.16 mg/l以下,足見加速碳酸鹽反應對飛灰中重金屬鉛之溶出,具有穩定化之效果。加速碳酸鹽反應對焚化飛灰水泥穩定化作業,水泥使用減量之評估結果顯示,在達到飛灰穩定化物相同之抗壓強度標準之條件下,經碳酸鹽反應後之飛灰,其水泥使用量約可減少20 %。整體而言,本研究已成功開發一套具有加速碳酸鹽礦化的反應系統,不僅驗證焚化飛灰及底渣均具捕捉二氧化碳之應用潛力外,同時亦可有效減少飛灰穩定化作業的水泥使用量,達成資源減量、飛灰無害化及二氧化碳捕捉的多重效果。
摘要(英) The accelerated carbonation system combined with semi-dry rotary kiln was developed and investigated the feasibility of the carbon dioxide capture and non-hazardous treatment of municipal solid waste incineration (MSWI) fly ash and bottom ash. The carbon dioxide capture efficiency, the tested metals leaching characteristics and acid neutralization capacity of MSWI fly ash and bottom ash after accelerated carbonation reaction, , and reduction in cement usage by stabilization were discussed, respectively.
The experimental results showed that pH value of MSWI fly ash and bottom ash could significantly decrease from 12 to 9 and below by accelerated carbonation during 8 hours reaction time. It is implied MSWI fly ash and bottom ash have matched criteria of carbonation reaction. In the case of moisture content effect on carbon dioxide capture efficiency, the carbon dioxide was captured by MSWI fly ash and bottom ash were decreased from 29.66 g/kg and 77.73 g/kg to 27.46 g/kg and 66.37 g/kg with moisture content increasing from 20 % to 30 %, respectively. This is because higher moisture content of ash could tend to block the pores of fly ash resulted in decreasing diffusion of carbon dioxide. On the other hand, due to the filling ratio of MSWI bottom ash in carbonation system was lower than that of fly ash, it can have a higher porosity and good diffusion of carbon dioxide resulted in MSWI bottom ash exhibits good carbon dioxide capture efficiency than that of MSWI fly ash. The presence of sulfur dioxide (SO2) could occur a competitive reaction during accelerated carbonation process. The experimental results indicated carbon dioxide was captured by MSWI fly ash and bottom ash were decreased from 29.66 g/kg and 77.73 g/kg to 23.79 g/kg and 64.17 g/kg with sulfur dioxide concentration increasing from 0 ppm to 30 ppm, respectively. That is, the sulfur dioxide could competitively react and consume the calcium content of fly ash and/or bottom ash resulted in decreasing carbon dioxide capture efficiency.
Based on the analysis results of environmental safety of MSWI fly ash and bottom ash by accelerated carbonation, the all tested heavy metals of carbonated fly ash and bottom ash were in compliance with current Taiwan EPA regulation thresholds. In the case of variation in Pb TCLP concentration of fly ash, it was significantly decreased from 4.12 mg/l to 0.16 mg/l and below after accelerated carbonation reaction. It could conclude that the accelerated carbonation has good potential for enhancing in Pb stabilization of MSWI fly ash. According to the results of compressive strength of stabilization product using fly ash before and after carbonation treatment, it was shown that the cement usage amounts for MSWI fly ash stabilization after carbonation could approximately reduce 20 % under controlled at the similar requirement of compressive strength of stabilization product. In summary, this research has been successfully developed and proven the performances of accelerated carbonation reaction system combined with semi-dry rotary kiln. It could have good potential for carbon dioxide sequestration, but also could reduce the cement usage amounts in MSWI fly ash stabilization. The multiple purposes of resources reduction, harmless of MSWI fly ash, and carbon dioxide sequestration by accelerated carbonation have been conducted in this research.
關鍵字(中) ★ 焚化飛灰
★ 焚化底渣
★ 加速碳酸鹽反應
★ 二氧化碳捕捉
關鍵字(英) ★ MSWI fly ash
★ MSWI bottom ash
★ accelerated carbonation
★ carbon dioxide capture
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 前言 1
第二章 文獻回顧 5
2-1 焚化飛灰及底渣處理再利用現況 5
2-1-1 國內外焚化飛灰和底渣處理及再利用現況 5
2-1-2 國內外焚化飛灰及底渣重金屬溶出及總量濃度 8
2-2 碳酸鹽礦化反應之影響參數 10
2-2-1 碳酸鹽礦化反應之原理 10
2-2-2 廢棄物特性對碳酸鹽反應影響 13
2-2-3 二氧化碳濃度對碳酸鹽反應影響 15
2-2-4 溫/濕度對碳酸鹽反應影響 17
2-3 碳酸鹽礦化反應之技術 19
2-3-1 自然碳酸鹽礦化 20
2-3-2 加速碳酸鹽礦化 21
2-4 碳酸鹽礦化反應後對於焚化飛灰及底渣影響 22
2-4-1 碳酸鹽礦化反應後對於基本性質影響 22
2-4-2 碳酸鹽礦化反應後對於重金屬溶出影響 24
2-4-3 碳酸鹽礦化反應後對於二氧化碳捕捉影響 27
2-5二氧化硫對於碳酸鹽礦化反應之競爭作用 28
第三章 研究材料與方法 31
3-1 研究材料 31
3-2 研究方法及實驗條件 33
3-2-1 加速碳酸鹽礦化反應試驗條件 34
3-2-2 加速碳酸鹽礦化反應設備 36
3-2-3 水泥穩定化及其減量評估之試驗條件 38
3-3 分析項目與方法 39
3-3-1 分析儀器 39
3-3-2 分析方法 41
第四章 結果與討論 47
4-1 研究材料基本性質分析 47
4-1-1 焚化飛灰及底渣基本性質分析結果 47
4-1-2 焚化飛灰及底渣戴奧辛特性 61
4-2 碳酸鹽礦化後焚化飛灰及底渣性質分析結果 75
4-2-1 碳酸鹽礦化反應後焚化飛灰之基本特性變化 75
4-2-2 碳酸鹽礦化反應後焚化底渣之基本特性之變化 82
4-3 碳酸鹽礦化反應對焚化灰渣二氧化碳捕捉之評估 90
4-3-1 碳酸鹽礦化反應後焚化飛灰二氧化碳捕捉之評估 92
4-3-2 碳酸鹽礦化反應後焚化底渣二氧化碳捕捉之評估 93
4-3-3 焚化飛灰及底渣二氧化碳捕捉率及氧化鈣化轉換率結果 95
4-3-4 碳酸鹽礦化反應指標及速率 101
4-4 碳酸鹽礦化焚化飛灰及底渣環境安全性評估 112
4-4-1 碳酸鹽礦化後對焚化飛灰及底渣重金屬穩定性評估 112
4-4-2 酸中和能力及不同pH之金屬溶出情況 117
4-5 碳酸鹽礦化對焚化飛灰及底渣戴奧辛影響 124
4-5-1 碳酸鹽礦化後對戴奧辛影響 125
4-5-2 碳酸鹽礦化後對PCDD/Fs質量與毒性當量濃度之物種分布 127
4-6 碳酸鹽反應後焚化飛灰水泥穩定化評估 136
4-6-1 水泥添加比例對抗壓強度影響 137
4-6-2 含水率對抗壓強度影響 138
4-6-3 碳酸鹽礦化反應對於水泥穩定化程序減量評估 140
4-6-4 碳酸鹽礦化後對焚化飛灰水泥穩定化重金屬溶出影響 141
4-7 半乾式旋轉窯加速碳酸鹽礦化系統評估 144
第五章 結論與建議 147
5-1 結論 147
5-2建議 148
參考文獻 151

參考文獻 Arickx, S., De Borger, V., Van Gerven, T., & Vandecasteele, C. 2010. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash. Waste Management, 30(7), 1296-1302
Arickx, S., Van Gerven, T., Knaepkens, T., Hindrix, K., Evens, R., & Vandecasteele, C. 2007. Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate. Waste management, 27(10), 1422-1427.
Anastasiadou, K., Christopoulos, K., Mousios, E., & Gidarakos, E. 2012. Solidification/stabilization of fly and bottom ash from medical waste incineration facility. Journal of hazardous materials, 207, 165-170.
An, J., Kim, J., Golestani, B., Tasneem, K. M., Al Muhit, B. A., Nam, B. H., & Behzadan, A. H. 2014. Evaluating the use of waste-to-energy bottom ash as road construction materials.
Baciocchi, R., Costa, G., Di Bartolomeo, E., Polettini, A., & Pomi, R. 2009. The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues. Waste management, 29(12), 2994-3003.
Baciocchi, R., Polettini, A., Pomi, R., Prigiobbe, V., Von Zedwitz, V. N., & Steinfeld, A. 2006. CO2 sequestration by direct gas− solid carbonation of air pollution control (APC) residues. Energy & Fuels, 20(5), 1933-1940.
Badreddine, R., & Francois, D. 2009. Assessment of the PCDD/F fate from MSWI residue used in road construction in France. Chemosphere, 74(3), 363-369.
Benassi, L., Pasquali, M., Zanoletti, A., Dalipi, R., Borgese, L., Depero, L. E., & Bontempi, E. 2016. Chemical Stabilization of Municipal Solid Waste Incineration Fly Ash without Any Commercial Chemicals: First Pilot-Plant Scaling Up. ACS Sustainable Chemistry & Engineering, 4(10), 5561-5569.
Bertos, M. F., Simons, S. J. R., Hills, C. D., & Carey, P. J. 2004. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of hazardous materials, 112(3), 193-205.
Blamey, J., Manovic, V., Anthony, E. J., Dugwell, D. R., & Fennell, P. S. 2015. On steam hydration of CaO-based sorbent cycled for CO2 capture. Fuel, 150, 269-277.
Bobicki, E. R., Liu, Q., Xu, Z., & Zeng, H. 2012. Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 38(2), 302-320.
Cappai, G., Cara, S., Muntoni, A., & Piredda, M. 2012. Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO2 sequestration. Journal of hazardous materials, 207, 159-164.
Castellote, M., Andrade, C., Turrillas, X., Campo, J., & Cuello, G. J. 2008. Accelerated carbonation of cement pastes in situ monitored by neutron diffraction. Cement and concrete research, 38(12), 1365-1373.
Chang, E. E., Chiu, A. C., Pan, S. Y., Chen, Y. H., Tan, C. S., & Chiang, P. C. 2013. Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor. International Journal of Greenhouse Gas Control, 12, 382-389.
Chang, E. E., Pan, S. Y., Yang, L., Chen, Y. H., Kim, H., & Chiang, P. C. 2015. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics.Waste Management,43, 283-292.
Chang, E. E., Chen, C. H., Chen, Y. H., Pan, S. Y., & Chiang, P. C. 2011. Performance evaluation for carbonation of steel-making slags in a slurry reactor. Journal of hazardous materials, 186(1), 558-564.
Chen, C. K., Lin, C., Wang, L. C., & Chang-Chien, G. P. 2006. The size distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in the bottom ash of municipal solid waste incinerators.Chemosphere,65(3), 514-520.
Chen, W. S., Chang, F. C., Shen, Y. H., Tsai, M. S., & Ko, C. H. 2012. Removal of chloride from MSWI fly ash. Journal of hazardous materials, 237, 116-120.
Chiang, K. Y., Jih, J. C., & Chien, M. D. 2008. The acid extraction of metals from municipal solid waste incinerator products. Hydrometallurgy, 93(1), 16-22.
Chiang, K. Y., Tsai, C. C., & Wang, K. S. 2009. Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods. Waste Management, 29(1), 277-284.
Chimenos, J. M., Fernandez, A. I., Miralles, L., Segarra, M., & Espiell, F. 2003. Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management, 23(10), 887-895.
Chou, J. D., Wey, M. Y., Liang, H. H., & Chang, S. H. 2009. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators. Journal of hazardous materials, 168(1), 197-202.
Cornelis, G., Van Gerven, T., & Vandecasteele, C. 2012. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation. Waste Management, 32(2), 278-286.
Crillesen, K., Skaarup, J. 2006 “Management of Bottom Ash from WTE Plants” An overview of management options and treatment methods.
Cui, H., Tang, W., Liu, W., Dong, Z., & Xing, F. 2015. Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms. Construction and Building Materials, 93, 522-527.
Cyr, M., Idir, R., & Escadeillas, G. 2012. Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials. Journal of hazardous materials, 243, 193-203.
Dabo, D., Badreddine, R., De Windt, L., & Drouadaine, I. 2009. Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. Journal of hazardous materials, 172(2), 904-913.
Dananjayan, R. R. T., Kandasamy, P., & Andimuthu, R. 2016. Direct mineral carbonation of coal fly ash for CO2 sequestration. Journal of Cleaner Production, 112, 4173-4182.
De Boom, A., Aubert, J. E., & Degrez, M. 2014. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution. Waste Management & Research, 32(5), 406-413.
Ebrahimi, A., Saffari, M., Milani, D., Montoya, A., Valix, M., & Abbas, A. 2017. Sustainable transformation of fly ash industrial waste into a construction cement blend via CO2 carbonation. Journal of Cleaner Production, 156, 660-669.
He, Z., Li, Y., Ma, X., Zhang, W., Chi, C., & Wang, Z. 2016. Influence of steam in carbonation stage on CO2 capture by Ca-based industrial waste during calcium looping cycles.International Journal of Hydrogen Energy,41(7), 4296-4304.
Huber, F., Blasenbauer, D., Mallow, O., Lederer, J., Winter, F., & Fellner, J. 2016. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln. Waste Management, 58, 181-190.
Huntzinger, D. N., Gierke, J. S., Kawatra, S. K., Eisele, T. C., & Sutter, L. L. 2009. Carbon dioxide sequestration in cement kiln dust through mineral carbonation.Environmental Science & Technology,43(6), 1986-1992.
Jiao, F., Zhang, L., Dong, Z., Namioka, T., Yamada, N., & Ninomiya, Y. 2016. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior.Fuel Processing Technology,152, 108-115.
Jiang, J. G., Du, X. J., Chen, M. Z., & Zhang, C. 2009. Continuous CO2 capture and MSWI fly ash stabilization, utilizing novel dynamic equipment.Environmental pollution,157(11), 2933-2938.
Jiang, J., Tian, S., & Zhang, C. 2013. Influence of SO2 in incineration flue gas on the sequestration of CO2 by municipal solid waste incinerator fly ash.Journal of Environmental Sciences,25(4), 735-740.
Jiang, J., Maozhe, C., Yan, Z., & Xin, X. 2009. Pb stabilization in fresh fly ash from municipal solid waste incinerator using accelerated carbonation technology. Journal of hazardous materials, 161(2), 1046-1051.
Ji, L., Yu, H., Wang, X., Grigore, M., French, D., Gözükara, Y. M., ... & Zeng, M. 2017. CO2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal. Fuel Processing Technology, 156, 429-437.
Lampris, C., Stegemann, J. A., & Cheeseman, C. R. 2009. Solidification/stabilisation of air pollution control residues using Portland cement: Physical properties and chloride leaching.Waste management,29(3), 1067-1075.
Lee, S., Kim, J. W., Chae, S., Bang, J. H., & Lee, S. W. (2016). CO2 sequestration technology through mineral carbonation: An extraction and carbonation of blast slag. Journal of CO2 Utilization, 16, 336-345
Lin, K. L. 2005. The influence of municipal solid waste incinerator fly ash slag blended in cement pastes. Cement and concrete research, 35(5), 979-986.
Lin, W. Y., Heng, K. S., Nguyen, M. Q., Ho, J. R. I., Noh, O. A. B. M., Zhou, X. D., ... & Wang, J. Y. 2017. Evaluation of the leaching behavior of incineration bottom ash using seawater: A comparison with standard leaching tests. Waste Management, 62, 139-146.
Lin, W. Y., Heng, K. S., Sun, X., & Wang, J. Y. 2015. Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching.Waste Management,41, 75-84.
Lin, W. Y., Heng, K. S., Sun, X., & Wang, J. Y. 2015. Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash. Waste Management, 43, 264-272.
Lin, Y. S., Chen, K. S., Lin, Y. C., Hung, C. H., & Chang-Chien, G. P. 2008. Polychlorinated dibenzo-p-dioxins/dibenzofurans distributions in ash from different units in a municipal solid waste incinerator. Journal of hazardous materials, 154(1), 954-962.
Li, X. G., Lv, Y., Ma, B. G., Chen, Q. B., Yin, X. B., & Jian, S. W. 2012. Utilization of municipal solid waste incineration bottom ash in blended cement. Journal of Cleaner Production, 32, 96-100.
Lombardi, L., Carnevale, E. A., & Pecorini, I. 2016. Experimental evaluation of two different types of reactors for CO2 removal from gaseous stream by bottom ash accelerated carbonation. Waste Management, 58, 287-298.
Mazzella, A., Errico, M., & Spiga, D. 2016. CO2 uptake capacity of coal fly ash: Influence of pressure and temperature on direct gas-solid carbonation. Journal of Environmental Chemical Engineering, 4(4), 4120-4128.
Meima, J. A., van der Weijden, R. D., Eighmy, T. T., & Comans, R. N. 2002. Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Applied Geochemistry, 17(12), 1503-1513.
Mitoma, Y., Miyata, H., Egashira, N., Simion, A. M., Kakeda, M., & Simion, C. 2011. Mechanochemical degradation of chlorinated contaminants in fly ash with a calcium-based degradation reagent.Chemosphere,83(10), 1326-1330.
Mu, Y., Saffarzadeh, A., & Shimaoka, T. 2017. Influence of ignition process on mineral phase transformation in municipal solid waste incineration (MSWI) fly ash: Implications for estimating loss-on-ignition (LOI).Waste management,59, 222-228.
Nilsson, M., Andreas, L., & Lagerkvist, A. 2016. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash. Waste Management, 51, 97-104.
Ni, P., Xiong, Z., Tian, C., Li, H., Zhao, Y., Zhang, J., & Zheng, C. 2017. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash. Waste Management.
Quina, M. J., Bordado, J. C., & Quinta-Ferreira, R. M. 2009. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Management, 29(9), 2483-2493.
Pan, S. Y., Chiang, P. C., Chen, Y. H., Chen, C. D., Lin, H. Y., & Chang, E. E. 2013. Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environmental science & technology, 47(23), 13677-13685.
Rendek, E., Ducom, G., & Germain, P. 2006. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash.Journal of hazardous materials,128(1), 73-79.
Ridha, F. N., Manovic, V., Macchi, A., & Anthony, E. J. 2012. The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived Al (OH)3 binder.Applied Energy,92, 415-420.
Santos, R. M., Mertens, G., Salman, M., Cizer, Ö., & Van Gerven, T. 2013. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. Journal of environmental management, 128, 807-821.
Santos, R. M., Van Bouwel, J., Vandevelde, E., Mertens, G., Elsen, J., & Van Gerven, T. 2013. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties.International Journal of Greenhouse Gas Control,17, 32-45.
Shi, D., Li, P., Zhang, C., & Tang, X. 2015. Levels and patterns of polychlorinated biphenyls in residues from incineration of established source-classified MSW in China. Toxicological & Environmental Chemistry, 97(10), 1337-1349.
Sicong, T., Jiang, J., & Chang, Z. 2011. Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization. Journal of hazardous materials,192(3), 1609-1615.
Siriruang, C., Toochinda, P., Julnipitawong, P., & Tangtermsirikul, S. 2016. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete. Journal of environmental management, 170, 70-78.
Sun, J., Bertos, M. F., & Simons, S. J. 2008. Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2.Energy & Environmental Science,1(3), 370-377.
Sun, X., Li, J., Zhao, X., Zhu, B., & Zhang, G. 2016. A review on the management of municipal solid waste fly ash in American. Procedia Environmental Sciences, 31, 535-540.
Takahashi, F., & Shimaoka, T. 2012. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock. Waste management, 32(12), 2294-2305.
Tang, J., & Steenari, B. M. 2016. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.Waste Management,48, 315-322.
Tian, S., & Jiang, J. 2012. Sequestration of Flue Gas CO2 by Direct Gas–Solid Carbonation of Air Pollution Control System Residues.Environmental science & technology,46(24), 13545-13551.
Ukwattage, N. L., Ranjith, P. G., Yellishetty, M., Bui, H. H., & Xu, T. 2015. A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration.Journal of Cleaner Production,103, 665-674.
Van Gerven, T., Van Baelen, D., Dutré, V., & Vandecasteele, C. 2004. Influence of carbonation and carbonation methods on leaching of metals from mortars.Cement and Concrete Research,34(1), 149-156.
Vehlow, J., Bergfeldt, B., & Hunsinger, H. 2006. PCDD/F and related compounds in solid residues from municipal solid waste incineration-a literature review. Waste management & research, 24(5), 404-420.
Verbinnen, B., Billen, P., Van Caneghem, J., & Vandecasteele, C. 2017. Recycling of MSWI bottom ash: a review of chemical barriers, engineering applications and treatment technologies. Waste and Biomass Valorization, 8(5), 1453-1466.
Wang, L., Jin, Y., & Nie, Y. 2010. Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca.Journal of hazardous materials,174(1), 334-343.
Wang, K. S., Chiang, K. Y., Lin, K. L., & Sun, C. J. 2001. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash. Hydrometallurgy, 62(2), 73-81.
Wang, Y., Huang, L., & Lau, R. 2016. Conversion of municipal solid waste incineration bottom ash to sorbent material for pollutants removal from water. Journal of the Taiwan Institute of Chemical Engineers, 60, 275-286.
Wei, Y., Shimaoka, T., Saffarzadeh, A., & Takahashi, F. 2011. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. Journal of hazardous materials, 187(1), 534-543.
Wiles, C., & Shepherd, P. 1999. Beneficial use and recycling of municipal waste combustion residues-a comprehensive resource document (No. NREL/BK-570-25841). National Renewable Energy Lab., Golden, CO (US).
Yan, J. H., Peng, Z., Lu, S. Y., Li, X. D., Ni, M. J., Cen, K. F., & Dai, H. F. 2007. Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration.Journal of Hazardous Materials,147(1), 652-657.
Yao, J., Qiu, Z., Kong, Q., Chen, L., Zhu, H., Long, Y., & Shen, D. 2017. Migration of Cu, Zn and Cr through municipal solid waste incinerator bottom ash layer in the simulated landfill. Ecological Engineering, 102, 577-582.
Yu, M., Tian, S., Chu, W., Chen, D., Wang, Q., & Wu, Z. 2009. Speciation of zinc in secondary fly ashes of municipal solid waste at high temperatures. Journal of synchrotron radiation, 16(4), 528-532.
Zhang, Y., Cetin, B., Likos, W. J., & Edil, T. B. 2016. Impacts of pH on leaching potential of elements from MSW incineration fly ash. Fuel, 184, 815-825.
王建順、張國慶,水淬高爐石應用於焚化爐飛灰穩定化/穩定化處理之研究,2010,第二十二屆廢棄物處理技術研討會,中華民國環境工程學會,屏東縣,WAS0990062-4。
王啟宗,2008。都市垃圾焚化飛灰與淨水污泥共同燒結產物之動力及材料特性研究,逢甲大學碩士論文。
行政院環保署焚化廠營運管理資訊系統,http://swims.epa.gov.tw/swims/swims_
net/Statistics/Statistics_Year.aspx。
江康鈺、王啟宗,都市垃圾焚化飛灰與淨水污泥共同燒結產物之動力及材料特性研究,2008a,第二十屆廢棄物處理技術研討會,中華民國環境工程學會,台北市,WAS00030671。
江康鈺、黃淑貞,都市垃圾焚化飛灰熔渣製成玻璃陶瓷之材料特性及其反應動力之研究,2008b,第二十屆廢棄物處理技術研討會,中華民國環境工程學會,台北市,WAS00030668。
江康鈺、周娉慧、簡光勵、楊叢印、陳鐿夫,都市垃圾焚化底渣熟化反應提昇重金屬穩定性評估研究,2009,第二十一屆廢棄物處理技術研討會,中華民國環境工程學會,雲林縣,WAS00031421。
林以潔、陳志成、江金龍,焚化飛灰鹼熔水熱合成沸石之最佳操作條件研究,2016,第二十八屆廢棄物處理技術研討會,中華民國環境工程學會,台南市,WAS1050040-4。
林凱隆、謝維洲、謝應得、陳炳良、謝政平、陳奕安,2011。焚化底渣水洗浮渣作為水泥膠結料之資材化研究,經濟部工業局2011產業永續發展聯合成果發表清潔生產暨環保技術研討會,8-27,台北。
柯明賢、林佩瑩,焚化底渣碳酸化加速養護可行性之研究,2010,第十三屆海峽兩岸環境保護學術研討會,482-488,重慶。
范文彬、戴文堅、劉建中、陳珮怡、詹家凱、章裕民,2010,都市垃圾焚化廠底渣戴奧辛含量特性之研究,第二十二屆廢棄物處理技術研討會,中華民國環境工程學會,屏東縣,WAS0990117-4。
張坤森、邱孔濱、羅文鴻、王琳瑋、林昇彥、徐誠隆,我國垃圾焚化飛灰再利用之困境及去化市場分析研究,2015a,第二十七屆廢棄物處理技術研討會,中華民國環境工程學會,桃園市,WAS1040057-4。
張坤森、劉真驛、戴宛柔、吳慧敏、王琳瑋、徐偉軒,2014,階段性技術處理垃圾焚化飛灰作為可回收材料之可行性,第二十六屆廢棄物處理技術研討會,中華民國環境工程學會,台中市,WAS1030039-4。
張坤森、劉真譯、蘇薏茹、何怡慧、朱珊姍、陳冠伯,兼具氯鹽最小化及無害化之 MSWI 飛灰精進處理程序研究,2015b,第二十七屆廢棄物處理技術研討會,中華民國環境工程學會,桃園市,WAS1040050-4。
張坤森、蘇薏茹、邱孔濱、徐誠隆、楊之葶,2016,利於垃圾焚化飛灰再利用之精進無害化處理研究,第二十八屆廢棄物處理技術研討會,中華民國環境工程學會,台南市,WAS1050060-4。
張祖恩、張高僑、施百鴻、柯明賢、蔣立中、盧幸成,2008,都市垃圾焚化底渣固存二氧化碳之研究,第二十屆廢棄物處理技術研討會,中華民國環境工程學會,台北市,WAS00030452。
張格誌、鄭大偉,焚化飛灰資源化及製成無機聚合綠色水泥之研究,2015,第二十七屆廢棄物處理技術研討會,中華民國環境工程學會,桃園市,WAS1040044-4。
莊連春、曾迪華、余秉澤,以還原碴廢棄材料捕捉二氧化碳之研究,2014,第二十六屆廢棄物處理技術研討會,中華民國環境工程學會,台中市,WAS1030082-4。
黃淑貞,2007。都市垃圾焚化飛灰熔渣製成玻璃陶瓷之材料特性及其反應動力之研究,逢甲大學碩士論文。
黃靖云、蔡主在、莊閔舟、林健榮,不同養護條件對都市垃圾焚化底渣重金屬溶出特性之影響,第十九屆廢棄物處理技術研討會,中華民國環境工程學會,高雄市,2007。
楊萬發、張慶源、張根穆,垃圾焚化底渣及飛灰短期自然風化時期重金屬溶出特性差異探討,第十九屆廢棄物處理技術研討會,中華民國環境工程學會,高雄市,2007。
詹詠翔、張祖恩、柯明賢、施百鴻、盧幸成、陳盈良,2009,碳酸化程序對轉爐石溶出特性之影響,第二十一屆廢棄物處理技術研討會,中華民國環境工程學會,雲林縣,WAS00030825。
廖文彬、楊仁泊、郭韋廷,電化學處理MSWI飛灰無害化之研究,2010,第二十二屆廢棄物處理技術研討會,中華民國環境工程學會,屏東市,WAS0990058-4。
陳昭羽,2011。加速碳酸鹽反應對垃圾焚化灰渣重金屬溶出個性影響之研究,逢甲大學碩士論文。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2018-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明