博碩士論文 104326003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.146.105.85
姓名 陳盈均(Ying-Jyun Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 香菸煙霧微粒的物理特性對肺部沉積模式之影響並應用於慢性阻塞性肺病小鼠模型
(Effects of Cigarette Smoke Particles Properties on Lung Deposition Models and Application in Mice COPD Model)
相關論文
★ 熱昇華廢棄相紙資源化研究★ 地勤公司從業人員搬運作業肌肉骨骼傷害風險評估
★ 高階製程安全管理架構★ In Situ Measurements of CCN Activity and Aerosol Optical Properties at Biomass Burning Source and Receptor Regions
★ 以COMSOL Multiphysics模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡★ 社區改造碳排放及減量計算分析與探討
★ 中小型燃煤鍋爐粒狀污染物、硫氧化物及氮氧化物經串聯控制設備後之去除效率探討研究-以桃園市為例★ 整合填充型水洗技術於潔淨室外氣空調箱 以去除酸鹼氣態分子污染物之研究
★ 固定污染源揮發性有機物(VOCs)自廠係數建置-以某矽晶圓製造廠為例★ 高層建築大樓室內空氣品質之探討-以某企業大樓為例
★ 公路交通運輸對於山谷地形郊區空氣品質之影響★ 以沸石轉輪焚化系統處理變壓器塗裝作業VOCs效率探討
★ 以數值模擬分析狹縫型虛擬衝擊器之效能★ 研究微粒帶電性質與呼吸毒性之關聯: 以小鼠暴露奈米黑碳微粒實驗為例
★ 靜電集塵式ALI暴露系統之設計、開發與評估★ 以石英晶體微天平量測細懸浮微粒PM2.5質量濃度之可行性探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 菸煙霧一般可分為煙霧由濾嘴端吸入到人體肺部之主流煙(Mainstream Smoke,簡稱MS),而從燃燒端直接釋放至環境和透過吸菸者呼出的煙氣則稱為側流煙(Sidestream Smoke,簡稱SS)。香菸煙霧是公認具有危害健康風險,組成相當複雜,迄今為止已有7000多種的化合物被鑑定出來。除化學成分外,微粒的尺寸、數目濃度、表面積、形狀和電性都可能影響呼吸暴露微粒的健康效應。為評估香菸煙霧微粒於肺部區域暴露劑量,常利用兩個肺部沉積數學模式(ICRP和MPPD)進行估算,模式中考慮呼吸參數、微粒特徵和肺部形態。至今已有許多研究探討香菸煙霧微粒各別的物化特性及肺部沉積積率,然而仍缺乏整合性的實驗數據。本研究將綜合量測香菸煙霧微粒的各項氣膠物化特性(包含微粒粒徑分佈、質量濃度、黑碳濃度、微粒沉積於肺泡區之微粒表面積濃度及微粒有效密度等),並進行特徵分析。探討主流菸及側流菸於肺部不同沉積位置之沉積積率,並應用於小鼠暴露模型。另外,香菸煙霧是造成慢性阻塞性肺病的重要危險因子。許多研究已指出暴露於香菸微粒下,自噬作用會加重肺部上皮細胞的老化、死亡、纖毛功能不良並導致肺氣腫的形成。醣皮質固醇為治療COPD重症患者常使用的抗發炎藥物,其中醣皮質固醇藥物與自噬作用之調控有關,但是目前COPD患者使用醣皮質固醇藥物與自噬作用之間的關聯性並不清楚。因此本研究嘗試建立COPD動物模式,並模擬使用醣皮質固醇藥物進行治療,其後研究肺部上表皮細胞自噬作用的表現與其調控機轉,所得資訊可供未來COPD患者藥物使用的參考。
經比較肺部沉積模式所估計及AeroTrak儀器實驗所測得的沉積肺泡區之微粒表面積濃度,可計算一微粒形狀因子(Ks),其結果指出SS香菸煙霧微粒之形貌近似於球形。此外,為避免香菸微粒聚集或老化影響,本研究除以傳統DMA-APM系統進行量測外,另建置APM-SMPS實驗方法提高量測之時間解析度。實驗結果發現側流煙及主流煙香菸煙霧微粒有效密度皆不受粒徑影響,此顯示主流煙亦為球形微粒。本研究亦改良Ning等人之方法,即時量測各不同粒徑下的BC、UVPM濃度,解析不同燃燒機制所致之側流煙及主流煙香菸煙霧微粒。以實驗所得之測值,並利用MPPD模式評估小鼠吸入主流煙及側流煙霧微粒各區域之沉積積率: 頭部沉積機率為0.52、0.47;支氣管各別為0.02、0.03;肺泡各別為0.01、0.04;肺部總合各別為0.55、0.54。當沉積劑量公式分別計算以吸入微粒數及表面積沉積量表示時,可發現以微粒沉積量較高者為吸入側流煙微粒,而表面積則以主流煙微粒較高。兩者之沉積積率整體差異不大,但吸入主流煙微粒表面積沉積量卻比側流煙高出5倍,此緣於側流煙及主流煙的微粒粒徑分佈差異。因此表示單看DF並不能代表吸入微粒沉積之情形,需考量其他因素。
小鼠暴露香菸煙霧微粒後犧牲並收集肺部組織,經由毒理分析(Total Protein、LDH、8-Isoprostane、IL-8、Western Blot)評估肺部組織的發炎反應及COPD小鼠自噬作用的表現是否與醣皮質固醇有關。本研究發現使用醣皮質固醇之COPD小鼠LC3BⅡ/Ⅰ之比值較無使用低,顯示出COPD小鼠的自噬作用功能異常。當自噬作用被抑制時,使用醣皮質固醇會增加LDH、8-isoprostane及IL-8的表現,雖然在統計上無顯著之差異。但是由先前的研究得知自噬作用與IL-8濃度相關,並且抑制自噬作用後,會使IL-8濃度下降。其本研究IL-8及LC3BⅡ/Ⅰ的比值卻是增加的,顯示醣皮質固醇活化自噬作用的能力;當自噬作用被活化時,使用醣皮質固醇刺激會發現LC3BⅡ/Ⅰ之比值增加,顯示Autophagy應移除累積的有害物質,降低ROS的產生及抑制發炎反應,但是8-isoprostane及IL-8濃度並無下降,表示產生過多或功能不良的Autophagy,反而無法使自噬作用產生保護機制。醣皮質固醇抑制發炎反應的能力下降並且增加肺部之氧化壓力,都顯示出COPD小鼠的自噬作用功能異常,導致COPD小鼠對醣皮質固醇的易感受性下降。
摘要(英) Tobacco smoking is a recognized risk to human health, and more than 7000 chemical compounds have been identified. Moreover, cigarette smoking has been considered to be a risk factor for developing chronic obstructive pulmonary disease (COPD), which is an important health problem in the world. Mainstream cigarette smoke (MS) is a major concern for smokers, and the sidestream cigarette smoke (SS) could influence the neighboring people through passive smoking. In addition to the chemical composition, particle size, number concentration, surface area, morphology and charging status might also be important parameters affecting the health effects and the deposition fraction in the respiratory system. To estimate the inhalation dose of cigarette smoke particles in different regions of the lung, international commission on radiological protection model (ICRP) and multiple path particle dosimetry model (MPPD) are generally used and the aerosol physical properties were required as input parameters, which, however, were not comprehensively investigated in the past. In this study, the aerosol physical properties of cigarette smoke particles (including particle size distribution, mass concentration, concentration of black carbon, particle surface area concentration deposited in the alveolar region and effective particle density) are thoroughly characterized and studied for the dose of respiratory deposition, and applied to mice exposure model. To avoid the effects of cigarette smoke particles coagulation or aging, the measurements were mostly performed in situ and reported in real-time. The effective density of MS and SS cigarette particles was measured by both traditional DMA-APM system and APM-SMPS system (with improved temporal resolution). The effective particle density was found to be independent of particle mobility size, which suggested that the particles could be spherical. The novel tandem DMA-AE33 system was established to provide the size-selective BC and UVPM mass concentrations of cigarette smoke. These parameters were used for calculating the deposition fraction of cigarette smoke in MPPD. The results show the deposition fraction of mice for MS particles were 0.52, 0.02, 0.01 and 0.55 for head, trachea and bronchi (TB), alveoli and total region, and those for SS particles were 0.47, 0.03, 0.04 and 0.54. Some of these aerosol characteristics of cigarette smoke particles are first time being revealed and valuable for lung deposition and inhalation toxicity studies.
The smoker’s inflammatory cells would increase lung epithelial cells’ ageing, death, poor cilia function and the formation of emphysema, and regulation of autophagy is associated with them. Clinically, glucocorticoid is commonly used for severe COPD with acute exacerbation; however, glucocorticosteroids insensitivity is often occurred in severe COPD. Our study to investigate the association between used corticosteroids treatment and lung inflammation in mice. After exposure, we collected lung tissue of mice to study the biological responses (Total Protein、LDH、8-Isoprostane、IL-8、Western Blot). LC3BⅡ/Ⅰ ratio was significantly reduced by use of glucocorticoid in COPD mice. The results suggest that COPD mice were insensitive to glucocorticosteroid. When autophagy was inhibited by 3-Methyladenine (3MA), there were no significant increased in LDH, 8-isoprostane and IL-8 by glucocorticosteroid. Previous researches indicated that when autophagy was inhibited by 3-MA, there was reduced in IL-8. Therefore, our study levels of IL-8 and LC3BⅡ/Ⅰ ratio were significantly increased by glucocorticosteroid at COPD mice. When autophagy was activated by Torin 1, there was increased in LC3BⅡ/Ⅰ ratio by glucocorticosteroid, To indicate the Autophagy helped to remove accumulated harmful substances, reduce the production of ROS and inhibit inflammation, but there were no reduced in 8-isoprostane and IL-8.The results show an association between autophagy and glucocorticosteroid in inflammation, which could be applied to glucocorticosteroid insensitivity in COPD mice. In conclusion, autophagy may regulate glucocorticoid sensitivity in COPD.
關鍵字(中) ★ 香菸煙霧微粒
★ 物理特性
★ 肺部沉積模式
★ 慢性阻塞性肺病動物模型
★ 自噬作用
★ 醣皮質固醇
關鍵字(英)
論文目次 摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 X
第一章 前 言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文 獻 回 顧 4
2.1 香菸煙霧的特性 4
2.1.1 微粒化學成分 4
2.1.2 微粒粒徑分佈 14
2.1.3 微粒有效密度 21
2.1.4 微粒表面積 22
2.1.5 微粒帶電性 23
2.2 肺部沉積模式 25
2.3 慢性阻塞性肺病中自噬作用與類固醇藥物 27
2.3.1 類固醇藥物在慢性阻塞性肺病之發炎反應中扮演的角色 27
2.3.2 自噬作用 28
2.3.3 類固醇藥物對自噬作用可能的調控機轉 30
第三章 研 究 方 法 33
3.1 研究架構 33
3.2 量測實驗 34
3.2.1 系統設置 34
3.2.2 量測儀器原理與數據校正 35
3.3 暴露實驗 42
3.3.1 實驗系統 42
3.3.2 實驗流程 44
3.3.3 毒理分析 45
第四章 結 果 與 討 論 52
4.1 量測結果 52
4.1.1 香菸煙霧微粒分佈 52
4.1.2 香菸煙霧微粒質量與成分 56
4.1.3 香菸煙霧微粒肺部沉積表面積濃度 61
4.1.4 香菸煙霧微粒構形 63
4.1.5 香菸煙霧微粒電性 69
4.2 應用肺部沉積模式 70
4.2.1 多途徑微粒沉積(Multiple-Path Particle Deposition, MPPD)模式 70
4.2.2 評估沉積劑量 75
4.3 動物暴露實驗分析 80
4.3.1 曝露實驗量測結果 80
4.3.2 肺部組織毒理分析 81
4.3.3 小鼠病理切片分析 86
第五章 結 論 88
参考文獻(REFERENCE) 91
附件 108
口試委員意見回覆 109

參考文獻 1. Organization, W.H., WHO global report on trends in prevalence of tobacco smoking 2015. 2015: World Health Organization.
2. Jha, P., Avoidable Deaths from Smoking: A Global Perspective. Public Health Reviews (2107-6952), 2011. 33(2).
3. Mendis, S., P. Puska, and B. Norrving, Global atlas on cardiovascular disease prevention and control. 2011: World Health Organization.
4. Anderson, P.J., J.D. Wilson, and F.C. Hiller, Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest, 1990. 97(5): p. 1115-1120.
5. Rodgman, A. and T.A. Perfetti, The chemical components of tobacco and tobacco smoke. 2013: CRC press.
6. Baker, R.R., Smoke generation inside a burning cigarette: modifying combustion to develop cigarettes that may be less hazardous to health. Progress in Energy and Combustion Science, 2006. 32(4): p. 373-385.
7. Löndahl, J., et al., Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhalation Toxicology, 2007. 19(2): p. 109-116.
8. Daigle, C.C., et al., Ultrafine particle deposition in humans during rest and exercise. Inhalation toxicology, 2003. 15(6): p. 539-552.
9. Osunsanya, T., G. Prescott, and A. Seaton, Acute respiratory effects of particles: mass or number? Occupational and Environmental Medicine, 2001. 58(3): p. 154-159.
10. Oberdörster, G., et al., Translocation of inhaled ultrafine particles to the brain. Inhalation toxicology, 2004. 16(6-7): p. 437-445.
11. ICRP and I.C.o.R. Protection, ICRP Publication 66: Human Respiratory Tract Model for Radiological Protection. 1994: Elsevier Health Sciences.
12. Chen, Z.-H., et al., Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PloS one, 2008. 3(10): p. e3316.
13. Lam, H.C., et al., Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction. The Journal of clinical investigation, 2013. 123(12): p. 5212-5230.
14. MacRedmond, R.E., et al., Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke. Respiratory research, 2007. 8(1): p. 84.
15. Wang, H., et al., Distribution of toxic chemicals in particles of various sizes from mainstream cigarette smoke. Inhalation toxicology, 2016. 28(2): p. 89-94.
16. Finlay, W.H., The mechanics of inhaled pharmaceutical aerosols: an introduction. 2001: Academic Press.
17. Kleinstreuer, C. and Y. Feng, Lung deposition analyses of inhaled toxic aerosols in conventional and less harmful cigarette smoke: a review. International journal of environmental research and public health, 2013. 10(9): p. 4454-4485.
18. Manahan, S.E., Environmental Chemistry, Brooks. Colei, CA, 1984.
19. Hoffmann, D., I. Hoffmann, and K. El-Bayoumy, The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chemical research in toxicology, 2001. 14(7): p. 767-790.
20. Control, C.f.D. and Prevention, How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. 2010.
21. Stabbert, R., et al., Analysis of aromatic amines in cigarette smoke. Rapid Communications in Mass Spectrometry, 2003. 17(18): p. 2125-2132.
22. Luceri, F., et al., Primary aromatic amines from side-stream cigarette smoke are common contaminants of indoor air. Toxicology and industrial health, 1993. 9(3): p. 405-413.
23. Torikaiu, K., et al., Study on tobacco components involved in the pyrolytic generation of selected smoke constituents. Food and chemical toxicology, 2005. 43(4): p. 559-568.
24. Manabe, S. and O. Wada, Carcinogenic tryptophan pyrolysis products in cigarette smoke condensate and cigarette smoke-polluted indoor air. Environmental Pollution, 1990. 64(2): p. 121-132.
25. Hecht, S.S. and D. Hoffmann, Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke. Carcinogenesis, 1988. 9(6): p. 875-884.
26. Humans, I.W.G.o.t.E.o.C.R.t., W.H. Organization, and I.A.f.R.o. Cancer, Smokeless tobacco and some tobacco-specific N-nitrosamines. Vol. 89. 2007: World Health Organization.
27. Lyon, F., IARC monographs on the evaluation of carcinogenic risks to humans. Some Industrial Chemicals, 1994. 60: p. 389-433.
28. From, I., 1.1. Chemical and physical data.
29. Counts, M., et al., Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regulatory Toxicology and Pharmacology, 2005. 41(3): p. 185-227.
30. Bernhard, D., et al., Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules. The FASEB Journal, 2005. 19(9): p. 1096-1107.
31. Bernhard, D., A. Rossmann, and G. Wick, Metals in cigarette smoke. IUBMB life, 2005. 57(12): p. 805-809.
32. Caruso, R.V., et al., Toxic metal concentrations in cigarettes obtained from US smokers in 2009: results from the International Tobacco Control (ITC) United States survey cohort. International journal of environmental research and public health, 2013. 11(1): p. 202-217.
33. Pinto, E. and I.M. Ferreira, Cation transporters/channels in plants: tools for nutrient biofortification. Journal of plant physiology, 2015. 179: p. 64-82.
34. Arsenic, I., arsenic compounds (Group 1). IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, 1987. 7.
35. Aitio, A., et al., IARC monographs on the evaluation of carcinogenic risks to humans: beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 1993. 58: p. 119-237.
36. Cancer, I.A.f.R.o., IARC monographs on the evaluation of carcinogenic risks to humans, volume 49-Chromium, nickel and welding. Lyon, IARC, 1990, 677 p, 1990.
37. Cancer, I.A.f.R.o., IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Some Aromatic Amines, Anthraquinones and Nitroso Compounds, and Inorganic Fluorides Used in Drinking-water and Dental Preparations. 1982: International Agency for Research on Cancer.
38. Humans, I.W.G.o.t.E.o.C.R.t., Inorganic and organic lead compounds. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 2006. 87: p. 1.
39. Piadé, J.-J., et al., Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead. Toxicology Reports, 2015. 2: p. 12-26.
40. Fresquez, M.R., R.S. Pappas, and C.H. Watson, Establishment of toxic metal reference range in tobacco from US cigarettes. Journal of Analytical Toxicology, 2013. 37(5): p. 298-304.
41. Pinto, E., et al., Metals transfer from tobacco to cigarette smoke: Evidences in smokers’ lung tissue. Journal of Hazardous Materials, 2017. 325: p. 31-35.
42. Nandi, M., et al., Cadmium content of cigarettes. The Lancet, 1969. 294(7634): p. 1329-1330.
43. Boffetta, P., Carcinogenicity of trace elements with reference to evaluations made by the International Agency for Research on Cancer. Scandinavian journal of work, environment & health, 1993: p. 67-70.
44. Smith, C., S. Livingston, and D. Doolittle, An international literature survey of “IARC Group I carcinogens” reported in mainstream cigarette smoke. Food and Chemical Toxicology, 1997. 35(10): p. 1107-1130.
45. Liu, X., J. Lu, and S. Liu, Synergistic induction of hydroxyl radical-induced DNA single-strand breaks by chromium (VI) compound and cigarette smoke solution. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1999. 440(1): p. 109-117.
46. Feng, Z., et al., Chromium (VI) exposure enhances polycyclic aromatic hydrocarbon–DNA binding at the p53 gene in human lung cells. Carcinogenesis, 2003. 24(4): p. 771-778.
47. Werfel, U., et al., Elevated DNA single-strand breakage frequencies in lymphocytes of welders exposed to chromium and nickel. Carcinogenesis, 1998. 19(3): p. 413-418.
48. Patai, K. and I. Balogh, Nickel-and cadmium-induced fetal myocardial changes in the mouse: the hazards of cigarette smoke in pregnancy. Acta Chirurgica Hungarica, 1988. 29(4): p. 315-321.
49. De Palma, G., et al., Metallic elements in pulmonary biopsies from lung cancer and control subjects. Acta Biomed, 2008. 79(Suppl 1): p. 43-51.
50. Richter, P.A., et al., Peer Reviewed: Trends in Tobacco Smoke Exposure and Blood Lead Levels Among Youths and Adults in the United States: The National Health and Nutrition Examination Survey, 1999–2008. Preventing chronic disease, 2013. 10.
51. Bush, A., Health effects of passive smoking in children, in The tobacco epidemic. 2015, Karger Publishers. p. 97-109.
52. Kazi, T., et al., Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. Journal of Hazardous Materials, 2009. 163(1): p. 302-307.
53. Exley, C., The aluminium-amyloid cascade hypothesis and Alzheimer’s disease. Alzheimer’s Disease, 2005: p. 225-234.
54. Gupta, V.B., et al., Aluminium in Alzheimer’s disease: are we still at a crossroad? Cellular and Molecular Life Sciences CMLS, 2005. 62(2): p. 143-158.
55. Forster, D., et al., Risk factors in clinically diagnosed presenile dementia of the Alzheimer type: a case-control study in northern England. Journal of Epidemiology & Community Health, 1995. 49(3): p. 253-258.
56. Becaria, A., S.C. Bondy, and A. Campbell, Aluminum and copper interact in the promotion of oxidative but not inflammatory events: implications for Alzheimer′s disease. Journal of Alzheimer′s Disease, 2003. 5(1): p. 31-38.
57. Chiba, M. and R. Masironi, Toxic and trace elements in tobacco and tobacco smoke. Bulletin of the World Health Organization, 1992. 70(2): p. 269.
58. Díaz, C., et al., Serum manganese concentrations in a representative sample of the Canarian population. Biological trace element research, 2001. 80(1): p. 43-51.
59. Gorell, J.M., et al., Smoking and Parkinson’s disease A dose–response relationship. Neurology, 1999. 52(1): p. 115-115.
60. Massadeh, A., F. Alali, and Q. Jaradat, Determination of copper and zinc in different brands of cigarettes in Jordan. Acta Chimica Slovenica, 2003. 50(2): p. 375-381.
61. Kocyigit, A., O. Erel, and S. Gur, Effects of tobacco smoking on plasma selenium, zinc, copper and iron concentrations and related antioxidative enzyme activities. Clinical biochemistry, 2001. 34(8): p. 629-633.
62. Rink, L. and H. Kirchner, Zinc-altered immune function and cytokine production. The Journal of nutrition, 2000. 130(5): p. 1407S-1411S.
63. Prasad, A.S. and O. Kucuk, Zinc in cancer prevention. Cancer and metastasis Reviews, 2002. 21(3-4): p. 291-295.
64. Kafai, M.R. and V. Ganji, Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: third National Health and Nutrition Examination Survey, 1988–1994. Journal of trace elements in medicine and biology, 2003. 17(1): p. 13-18.
65. Järup, L., Hazards of heavy metal contamination. British medical bulletin, 2003. 68(1): p. 167-182.
66. Suzuki, T., S. Shishido, and K. Urushiyama, Mercury in cigarettes. The Tohoku journal of experimental medicine, 1976. 119(4): p. 353-356.
67. Wulf, H., et al., Sister chromatid exchange (SCE) in greenlandic eskimos. dose—response relationship between SCE and seal diet, smoking, and blood cadmium and mercury concentrations. Science of the total environment, 1986. 48(1-2): p. 81-94.
68. Adachi, A., et al., Vanadium content of cigarettes. Bulletin of environmental contamination and toxicology, 1998. 61(2): p. 276-280.
69. Goldfine, A.B., et al., Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. The Journal of Clinical Endocrinology & Metabolism, 1995. 80(11): p. 3311-3320.
70. Barceloux, D.G. and D. Barceloux, Vanadium. Journal of Toxicology: Clinical Toxicology, 1999. 37(2): p. 265-278.
71. Goebeler, M., et al., Activation of nuclear factor-kappa B and gene expression in human endothelial cells by the common haptens nickel and cobalt. The Journal of Immunology, 1995. 155(5): p. 2459-2467.
72. Rousseau, M.-C., K. Straif, and J. Siemiatycki, IARC carcinogen update. Environmental health perspectives, 2005. 113(9): p. A580.
73. Antón, M.A.L., et al., Thallium in coal: Analysis and environmental implications. Fuel, 2013. 105: p. 13-18.
74. Hoffmann, D.H., Ilse, The changing cigarette, 1950-1995. Journal of Toxicology and Environmental Health Part A, 1997. 50(4): p. 307-364.
75. MacKown, C.T., S.J. Crafts-Brandner, and T.G. Sutton, Relationships among soil nitrate, leaf nitrate, and leaf yield of burley tobacco. 1999.
76. Rickert, W., J. Robinson, and N. Collishaw, A study of the growth and decay of cigarette smoke NOx in ambient air under controlled conditions. Environment International, 1987. 13(6): p. 399-408.
77. Horton, A. and M. Guerin, Quantitative determination of sulfur compounds in the gas phase of cigarette smoke. Journal of Chromatography A, 1974. 90(1): p. 63-70.
78. Chen, B., et al., Physical characterization of cigarette smoke aerosol generated from a Walton smoke machine. Aerosol Science and Technology, 1990. 12(2): p. 364-375.
79. Bernstein, D.M., A review of the influence of particle size, puff volume, and inhalation pattern on the deposition of cigarette smoke particles in the respiratory tract. Inhalation toxicology, 2004. 16(10): p. 675-689.
80. Adam, T., et al., Simultaneous on-line size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke. Analytical and bioanalytical chemistry, 2009. 394(4): p. 1193-1203.
81. Kane, D.B., et al., Effect of smoking parameters on the particle size distribution and predicted airway deposition of mainstream cigarette smoke. Inhalation toxicology, 2010. 22(3): p. 199-209.
82. Alderman, S.L. and B.J. Ingebrethsen, Characterization of mainstream cigarette smoke particle size distributions from commercial cigarettes using a DMS500 fast particulate spectrometer and smoking cycle simulator. Aerosol Science and Technology, 2011. 45(12): p. 1409-1421.
83. van Dijk, W.D., S. Gopal, and P.T. Scheepers, Nanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer. Analytical and bioanalytical chemistry, 2011. 399(10): p. 3573-3578.
84. Sahu, S., et al., Particle size distribution of mainstream and exhaled cigarette smoke and predictive deposition in human respiratory tract. Aerosol Air Qual Res, 2013. 13(1): p. 324-32.
85. Li, X., et al., Characterization of particle size distribution of mainstream cigarette smoke generated by smoking machine with an electrical low pressure impactor. Journal of Environmental Sciences, 2014. 26(4): p. 827-833.
86. Okada, T. and K. Matsunuma, Determination of particle-size distribution and concentration of cigarette smoke by a light-scattering method. Journal of Colloid and Interface Science, 1974. 48(3): p. 461-469.
87. Ueno, Y. and L.K. Peters, Size and generation rate of sidestream cigarette smoke particles. Aerosol Science and Technology, 1986. 5(4): p. 469-476.
88. Chung, I.-P. and D. Dunn-Rankin, In situ light scattering measurements of mainstream and sidestream cigarette smoke. Aerosol Science and Technology, 1996. 24(2): p. 85-101.
89. Morawska, L., W. Barron, and J. Hitchins, Experimental deposition of environmental tobacco smoke submicrometer particulate matter in the human respiratory tract. American Industrial Hygiene Association Journal, 1999. 60(3): p. 334-339.
90. Klepeis, N.E., et al., Determining size-specific emission factors for environmental tobacco smoke particles. Aerosol Science & Technology, 2003. 37(10): p. 780-790.
91. Wu, C., et al., Ultrafine particle emissions from cigarette smouldering, incense burning, vacuum cleaner motor operation and cooking. Indoor and Built Environment, 2012. 21(6): p. 782-796.
92. Bodnar, J., et al., Mainstream smoke chemistry analysis of samples from the 2009 US cigarette market. Regulatory Toxicology and Pharmacology, 2012. 64(1): p. 35-42.
93. Shin, H.-J., et al., Effect of cigarette filters on the chemical composition and in vitro biological activity of cigarette mainstream smoke. Food and Chemical Toxicology, 2009. 47(1): p. 192-197.
94. Dickens, C., et al. Puffing and inhalation behaviour in cigarette smoking: Implications for particle diameter and dose. in Journal of Physics: Conference Series. 2009. IOP Publishing.
95. Lipowicz, P.J., Determination of cigarette smoke particle density from mass and mobility measurements in a Millikan cell. Journal of Aerosol Science, 1988. 19(5): p. 587-589.
96. Johnson, T.J., et al., Steady-state measurement of the effective particle density of cigarette smoke. Journal of Aerosol Science, 2014. 75: p. 9-16.
97. McMurry, P.H., et al., The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Science & Technology, 2002. 36(2): p. 227-238.
98. Johnson, T.J., et al., Transient measurement of the effective particle density of cigarette smoke. Journal of Aerosol Science, 2015. 87: p. 63-74.
99. Russell, A.G. and B. Brunekreef, A focus on particulate matter and health. 2009, ACS Publications.
100. Oberdörster, G., E. Oberdörster, and J. Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives, 2005: p. 823-839.
101. Stoeger, T., et al., Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental health perspectives, 2006: p. 328-333.
102. Oberdörster, G., Pulmonary effects of inhaled ultrafine particles. International archives of occupational and environmental health, 2000. 74(1): p. 1-8.
103. Jiang, J., et al., Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2008. 2(1): p. 33-42.
104. Leavey, A., et al., Comparison of measured particle lung-deposited surface area concentrations by an Aerotrak 9000 using size distribution measurements for a range of combustion aerosols. Aerosol Science and Technology, 2013. 47(9): p. 966-978.
105. Yu, C. and K. Chandra, Precipitation of submicron charged particles in human lung airways. Bulletin of mathematical biology, 1977. 39(4): p. 471-478.
106. Chan, T.L., et al., Effect of electrostatic charges on particle deposition in a hollow cast of the human larynx-tracheobronchial tree. Journal of Aerosol Science, 1978. 9(5): p. 463-468.
107. Cohen, B.S., et al., Deposition of charged particles on lung airways. Health Physics, 1998. 74(5): p. 554-560.
108. Majid, H., et al., Implementation of charged particles deposition in stochastic lung model and calculation of enhanced deposition. Aerosol Science and Technology, 2012. 46(5): p. 547-554.
109. Hirsikko, A., et al., Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics, 2011. 11(2): p. 767-798.
110. Maricq, M.M., Thermal equilibration of soot charge distributions by coagulation. Journal of Aerosol Science, 2008. 39(2): p. 141-149.
111. Lee, E.S., B. Xu, and Y. Zhu, Measurements of ultrafine particles carrying different number of charges in on-and near-freeway environments. Atmospheric environment, 2012. 60: p. 564-572.
112. McRae, D., The physical and chemical nature of tobacco smoke. Rec Adv Tob Sci, 1990. 16: p. 233-323.
113. Hofmann, W., Modelling inhaled particle deposition in the human lung—a review. Journal of Aerosol Science, 2011. 42(10): p. 693-724.
114. Taulbee, D.B. and C. Yu, A theory of aerosol deposition in the human respiratory tract. Journal of Applied Physiology, 1975. 38(1): p. 77-85.
115. Mitsakou, C., C. Helmis, and C. Housiadas, Eulerian modelling of lung deposition with sectional representation of aerosol dynamics. Journal of Aerosol Science, 2005. 36(1): p. 75-94.
116. Yeh, H.-C. and G. Schum, Models of human lung airways and their application to inhaled particle deposition. Bulletin of mathematical biology, 1980. 42(3): p. 461-480.
117. James, A.C., Lung dosimetry. Radon and its decay products in indoor air, 1988: p. 259-309.
118. Asgharian, B., W. Hofmann, and R. Bergmann, Particle deposition in a multiple-path model of the human lung. Aerosol Science & Technology, 2001. 34(4): p. 332-339.
119. Raabe, O.G., Tracheobronchial geometry: human, dog, rat, hamster--a compilation of selected data from the project respiratory tract deposition models. 1976: US Energy Research and Development Administration, Division of Biomedical and Environmental Research.
120. Koblinger, L., Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Physics in medicine and biology, 1985. 30(6): p. 541.
121. Koblinger, L. and W. Hofmann, Monte Carlo modeling of aerosol deposition in human lungs. Part I: Simulation of particle transport in a stochastic lung structure. Journal of Aerosol Science, 1990. 21(5): p. 661-674.
122. Hofmann, W. and L. Koblinger, Monte Carlo modeling of aerosol deposition in human lungs. Part II: Deposition fractions and their sensitivity to parameter variations. Journal of Aerosol Science, 1990. 21(5): p. 675-688.
123. Haefeli‐Bleuer, B. and E.R. Weibel, Morphometry of the human pulmonary acinus. The Anatomical Record, 1988. 220(4): p. 401-414.
124. Ji, J.H. and I.J. Yu, Estimation of human equivalent exposure from rat inhalation toxicity study of silver nanoparticles using multi-path particle dosimetry model. Toxicology Research, 2012. 1(3): p. 206-210.
125. Oberdorster, G., Dosimetric principles for extrapolating results of rat inhalation studies to humans, using an inhaled Ni compound as an example. Health physics, 1989. 57: p. 213-220.
126. Oller, A.R. and G. Oberdörster, Incorporation of particle size differences between animal studies and human workplace aerosols for deriving exposure limit values. Regulatory Toxicology and Pharmacology, 2010. 57(2): p. 181-194.
127. Barnes, P.J., Mediators of chronic obstructive pulmonary disease. Pharmacological reviews, 2004. 56(4): p. 515-548.
128. Salvi, S.S. and P.J. Barnes, Chronic obstructive pulmonary disease in non-smokers. The lancet, 2009. 374(9691): p. 733-743.
129. Eisner, M.D., et al., An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 2010. 182(5): p. 693-718.
130. Barnes, P.J., New anti-inflammatory targets for chronic obstructive pulmonary disease. Nature reviews Drug discovery, 2013. 12(7): p. 543-559.
131. Hogg, J.C., et al., The nature of small-airway obstruction in chronic obstructive pulmonary disease. New England Journal of Medicine, 2004. 350(26): p. 2645-2653.
132. Sin, D.D. and S.P. Man, Cooling the fire within: inhaled corticosteroids and cardiovascular mortality in COPD. CHEST Journal, 2006. 130(3): p. 629-631.
133. Lecker, S.H., A.L. Goldberg, and W.E. Mitch, Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. Journal of the American Society of Nephrology, 2006. 17(7): p. 1807-1819.
134. Luo, H., J. Wong, and B. Wong, Protein degradation systems in viral myocarditis leading to dilated cardiomyopathy. Cardiovascular research, 2009. 85(2): p. 347-356.
135. Ding, W.-X., et al., Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. The American journal of pathology, 2007. 171(2): p. 513-524.
136. Kumar, P., et al., Autophagy and transporter-based multi-drug resistance. Cells, 2012. 1(3): p. 558-575.
137. Mortimore, G.E., N.J. Hutson, and C.A. Surmacz, Quantitative correlation between proteolysis and macro-and microautophagy in mouse hepatocytes during starvation and refeeding. Proceedings of the National Academy of Sciences, 1983. 80(8): p. 2179-2183.
138. Haspel, J.A. and A.M. Choi, Autophagy: a core cellular process with emerging links to pulmonary disease. American journal of respiratory and critical care medicine, 2011. 184(11): p. 1237-1246.
139. Ryter, S.W. and A.M. Choi, Autophagy in the lung. Proceedings of the American Thoracic Society, 2010. 7(1): p. 13-21.
140. Kim, J., et al., AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature cell biology, 2011. 13(2): p. 132-141.
141. Rabinowitz, J.D. and E. White, Autophagy and metabolism. Science, 2010. 330(6009): p. 1344-1348.
142. Yorimitsu, T. and D.J. Klionsky, Autophagy: molecular machinery for self-eating. Cell Death & Differentiation, 2005. 12: p. 1542-1552.
143. Takasaka, N., et al., Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. The Journal of Immunology, 2014. 192(3): p. 958-968.
144. Fujii, S., et al., Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology, 2012. 1(5): p. 630-641.
145. Guo, Y., et al., Autophagy in locomotor muscles of patients with chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 2013. 188(11): p. 1313-1320.
146. Wu, M.-Y., et al., Steroid receptor coactivator 3 regulates autophagy in breast cancer cells through macrophage migration inhibitory factor. Cell research, 2012. 22(6): p. 1003-1021.
147. Xia, X., et al., Glucocorticoid‐induced autophagy in osteocytes. Journal of bone and mineral research, 2010. 25(11): p. 2479-2488.
148. Laane, E., et al., Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy. Cell Death & Differentiation, 2009. 16(7): p. 1018-1029.
149. Bitto, A., et al., Long-term IGF-I exposure decreases autophagy and cell viability. PLoS One, 2010. 5(9): p. e12592.
150. Pansters, N.A., et al., Synergistic stimulation of myogenesis by glucocorticoid and IGF-I signaling. Journal of Applied Physiology, 2013. 114(9): p. 1329-1339.
151. An, C.H., et al., TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2012. 303(9): p. L748-L757.
152. Scheckman, J.H., P.H. McMurry, and S.E. Pratsinis, Rapid characterization of agglomerate aerosols by in situ mass− mobility measurements. Langmuir, 2009. 25(14): p. 8248-8254.
153. Tajima, N., et al., Mass range and optimized operation of the aerosol particle mass analyzer. Aerosol Science and Technology, 2011. 45(2): p. 196-214.
154. Li, W. and P. Hopke, Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Science and technology, 1993. 19(3): p. 305-316.
155. Baker, R.R., Product formation mechanisms inside a burning cigarette. Progress in Energy and Combustion Science, 1981. 7(2): p. 135-153.
156. Jenkins, R.A., B. Tomkins, and M.R. Guerin, The chemistry of environmental tobacco smoke: composition and measurement. 2000: CRC Press.
157. Perfetti, T.A. and A. Rodgman, The complexity of tobacco and tobacco smoke. Beiträge zur Tabakforschung/Contributions to Tobacco Research, 2014. 24(5): p. 215-232.
158. Guerin, M., C. Higgins, and R. Jenkins, Measuring environmental emissions from tobacco combustion: sidestream cigarette smoke literature review. Atmospheric Environment (1967), 1987. 21(2): p. 291-297.
159. Ning, Z., et al., Black carbon mass size distributions of diesel exhaust and urban aerosols measured using differential mobility analyzer in tandem with Aethalometer. Atmospheric environment, 2013. 80: p. 31-40.
160. Asbach, C., et al., A low pressure drop preseparator for elimination of particles larger than 450 nm. Aerosol and Air Quality Resarch, 2011. 11(5): p. 487-496.
161. DeCarlo, P.F., et al., Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology, 2004. 38(12): p. 1185-1205.
162. Borgerding, M. and H. Klus, Analysis of complex mixtures–cigarette smoke. Experimental and Toxicologic Pathology, 2005. 57: p. 43-73.
163. Hussein, T., et al., Modeling regional deposited dose of submicron aerosol particles. Science of the Total Environment, 2013. 458: p. 140-149.
164. Bennett, W.D. and K.L. Zeman, Effect of body size on breathing pattern and fine-particle deposition in children. Journal of Applied Physiology, 2004. 97(3): p. 821-826.
165. Vu, T.V., et al., Physical properties and lung deposition of particles emitted from five major indoor sources. Air Quality, Atmosphere & Health, 2017. 10(1): p. 1-14.
166. Martonen, T. and F. Miller, Dosimetry and species sensitivity: key factors in hazard evaluation using animal exposure data. Journal of Aerosol Science, 1986. 17(3): p. 316-319.
167. Tankersley, C.G., R.S. Fitzgerald, and S.R. Kleeberger, Differential control of ventilation among inbred strains of mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1994. 267(5): p. R1371-R1377.
168. Winkler-Heil, R. and W. Hofmann, Modeling particle deposition in the Balb/c mouse respiratory tract. Inhalation toxicology, 2016. 28(4): p. 180-191.
169. Hwang, J.-w., et al., Cigarette smoke-induced autophagy is regulated by SIRT1–PARP-1-dependent mechanism: implication in pathogenesis of COPD. Archives of biochemistry and biophysics, 2010. 500(2): p. 203-209.
170. Ito, K., et al., Decreased histone deacetylase activity in chronic obstructive pulmonary disease. New England Journal of Medicine, 2005. 352(19): p. 1967-1976.
171. Mizushima, N. and T. Yoshimori, How to interpret LC3 immunoblotting. Autophagy, 2007. 3(6): p. 542-545.
172. Luo, Y., et al., Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKα dependent manner. Experimental gerontology, 2011. 46(11): p. 860-867.

指導教授 蕭大智(Ta-Chih Hsiao) 審核日期 2018-3-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明